determine o valor de x nas igualdades a seguir : a) log x 243=5. b) log x 1=10. c) log x 126 = 3. d) log x 64 = x. e) log x 625 = 2
Usuário anônimo:
A letra d não seria 2 no lugar de x?
Soluções para a tarefa
Respondido por
24
.a)
![\log_x243=5 \\ \\ x^5=243 \\ \\ x= \sqrt[5]{243} \\ \\ x= \sqrt[5]{3^5} \\ \\ x=3 \log_x243=5 \\ \\ x^5=243 \\ \\ x= \sqrt[5]{243} \\ \\ x= \sqrt[5]{3^5} \\ \\ x=3](https://tex.z-dn.net/?f=%5Clog_x243%3D5+%5C%5C++%5C%5C+x%5E5%3D243+%5C%5C++%5C%5C+x%3D+%5Csqrt%5B5%5D%7B243%7D++%5C%5C++%5C%5C+x%3D+%5Csqrt%5B5%5D%7B3%5E5%7D++%5C%5C++%5C%5C+x%3D3)
b)
![\log_x1=10 \\ \\ x^{10}=1 \\ \\ x= \sqrt[10]{1} \\ \\ x=1 \log_x1=10 \\ \\ x^{10}=1 \\ \\ x= \sqrt[10]{1} \\ \\ x=1](https://tex.z-dn.net/?f=%5Clog_x1%3D10+%5C%5C++%5C%5C+x%5E%7B10%7D%3D1+%5C%5C++%5C%5C+x%3D+%5Csqrt%5B10%5D%7B1%7D++%5C%5C++%5C%5C+x%3D1)
c)
![\log_x126=3 \\ \\ x^3=126 \\ \\ x= \sqrt[3]{126} \log_x126=3 \\ \\ x^3=126 \\ \\ x= \sqrt[3]{126}](https://tex.z-dn.net/?f=%5Clog_x126%3D3+%5C%5C++%5C%5C+x%5E3%3D126+%5C%5C++%5C%5C+x%3D+%5Csqrt%5B3%5D%7B126%7D+)
d)

e)

b)
c)
d)
e)
Perguntas interessantes