Matemática, perguntado por gavamariana, 1 ano atrás

Determine o valor de x na sentença 4x+16x+...+4096x=10920, sabendo que os termos do primeiro membro formam uma pg, e o termo do segundo membro é a soma deles.

Soluções para a tarefa

Respondido por oliverprof
5
 a_{n}=  a_{1}. q^{n-1} ~~~~~~~ ~~~~~~S_{n}=  \dfrac{a_{1}( q^{n}-1)  }{q-1}       \\ 4096x=4x.4^{n-1}  \\ 4096=4.4^{n-1}~~~~~~~~~~~ 10920= \dfrac{4x(4^6-1)}{4-1}  \\ 4^6=4^n \Rightarrow n=6~~~~~~~2730= \dfrac{4095x}{3} \Rightarrow 1365x=2730  \\  \\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~x = \dfrac{2730}{1365}~~~ \therefore ~~\Larged\boxed{x=2}
Perguntas interessantes