Matemática, perguntado por MarcoOPapirao, 11 meses atrás

Determine o valor de x, de modo que os números (x+4)^2, (x-1)^2 e (x+2)^2 estejam, nessa ordem em PA.

Soluções para a tarefa

Respondido por portokettlyn
14

(x+4)²,(x-1)²e(x+2)²

(x+2)²-(x-1)²=(x-1)²-(x+4)²=r

x²+4x+4-x²+2x-1=x²-2x+1-x²-8x-16

6x+3=-10x-15

6x+10x=-15-3

16x=-18

x=-18/16=-9/8

#

Se os tres são consecutivos em PA, então seria:

a1, a1+r, a1+2r ou a1, a2, a3

Soma (a1+a3)/2 = a2

(a1+a1+2r)/2=a1+r

(2a1+2r)/2=a1+r -> a1+r=a1+r

então (a1+a3)/2=a2

((x+4)*2+(x+2)*2=(x-1)*2

(x2 +8x +16 + x2+4x+4)/2=x2-2x+1

(2x2 + 12x + 20)/2=x2-2x+1

x2+6x+10=x2-2x+1

6x+2x=-10+1

8x=-9

x=-9/8


portokettlyn: Já vou tá pronta pro 1 e.m
portokettlyn: ???
portokettlyn: meu nome la
portokettlyn: chama la
portokettlyn: Ou me da seu nome de la
portokettlyn: ???
portokettlyn: Ou prefere conversar por aq?
MarcoOPapirao: Não tenho discord
portokettlyn: ah bom
Perguntas interessantes