Determine o valor de
∫
cos()
urgente!
vou deixar em foto também.
Alguém mim ajuda por favor.
Soluções para a tarefa
Resposta:
∫e^(x) * cos(x) dx
Fazendo por partes
u = cos(x) ==>du=-sen(x) dx
e^(x) dx = dv ==> ∫ e^(x) dx = ∫dv =e^(x) =v
∫e^(x) * cos(x) dx = cos(x)*e^(x) - ∫ e^(x) *( -sen(x) dx)
∫e^(x) * cos(x) dx = cos(x)*e^(x) + ∫ e^(x) *sen(x) dx (i)
####################################################
∫ e^(x) *sen(x) dx
Fazendo por partes
u= sen(x) ==> du=cos(x) dx
e^(x) dx = dv ==> ∫ e^(x) dx = ∫dv =e^(x) =v
∫ e^(x) *sen(x) dx = sen(x) * e^(x) - ∫e^(x) * cos(x) dx (ii)
####################################################
(ii) em (i)
∫e^(x) * cos(x) dx = cos(x)*e^(x) +sen(x) * e^(x) - ∫e^(x) * cos(x) dx
2*∫e^(x) * cos(x) dx = cos(x)*e^(x) +sen(x) * e^(x)
∫e^(x) * cos(x) dx =(1/2) * [cos(x)*e^(x) +sen(x) * e^(x) ]
A1 = | de -π/4 a 0 [(1/2) * [cos(x)*e^(x) +sen(x) * e^(x) ]] |
A2 = | de 0 a 3π/4 [(1/2) * [cos(x)*e^(x) +sen(x) * e^(x) ]] |
Resultado = A1 + A2