Matemática, perguntado por mariihmendes, 1 ano atrás

Determine o valor de:

Anexos:

Soluções para a tarefa

Respondido por Belobog
1
a)
S=\log _2\left(16\right)+\log _9\left(\sqrt[3]{3}\right)-\log _2\left(0,25\right)

\log _2\left(16\right)=x\rightarrow \:16=2^x\rightarrow \:2^4=2^x\rightarrow \:x=4

\log _9\left(\sqrt[3]{3}\right)=y\:\rightarrow \:\:\log _9\:3^{\frac{1}{3}}=y\rightarrow \:\frac{1}{3}\log _9\left(3\right)=y\rightarrow \:\frac{1}{3}\cdot \frac{1}{2}=y= \frac{1}{6}

\log _8\left(0,25\right)=y\rightarrow \:\frac{\log _2\left(0,25\right)}{\log 2\left(8\right)}=y\rightarrow \:\frac{-2}{3}=y=-\frac{2}{3}

4+ \frac{1}{6}-( -\frac{2}{3} )\rightarrow4+\frac{1}{\:6}+\frac{2}{3}= \frac{29}{6}

b)
 a^{\log _a\left(b\right)}=b

2^{^{\log _2\left(15\right)}}=15

c)
25^{\log _5\left(4\right)\cdot \log _{16}\left(7\right)}

(5^2)^{\log _5\left(4\right)\cdot \log _{16}\left(7\right)}

5^{\log _5\left(4\right)\cdot \log _{16}\left(7\right)\cdot2}

4^ \log _{16}\left(7\right)\cdot2}

(4^2)^ \log _{16}\left(7\right)}

16^ \log _{16}\left(7\right)}=7

d)


e)
-\log _2\left(\frac{1024}{\sqrt[3]{256}}\right)

 -\log _2\left(\frac{2^{10}}{\sqrt[3]{2^{8}}}\right)

 -\log _2\left(\frac{2^{10}}{{2^{ \frac{1}{3}\cdot 8}}}\right)

 -\log _2\left(2^{10}\cdot2^{-\frac{8}{3} }\right)

-\log _2\left(2^{10-\frac{8}{3}\right)

-\log _2\left(2^\frac{22}{3}\right)

\log _2\left(2^\frac{22}{3}\right)^{-1}\rightarrow\log _2\left(2^{\frac{22}{2}\cdot \left(-1\right)}\right)\rightarrow\log_2 (2^{-\frac{22}{3}})=y\rightarrow2^y=2^{-\frac{22}{3}}

y= -\frac{22}{3}

Perguntas interessantes