Matemática, perguntado por alinelamena, 11 meses atrás

Determine o rotacional do campo vetorial V(x,y,z) = (xyz, 0, −x²y).

Soluções para a tarefa

Respondido por solkarped
2

✅ Após resolver os cálculos, concluímos que o rotacional do referido campo vetorial é:

          \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\textrm{rot}\:\vec{V} = -x^{2}\,\vec{i} + 3xy\,\vec{j} - xz\,\vec{k}\:\:\:}}\end{gathered}$}

   

Seja a função:

              \Large\displaystyle\text{$\begin{gathered} V(x, y, z) = (xyz,\,0,\,-x^{2}y)\end{gathered}$}

Organizando o campo vetorial, temos:

        \Large\displaystyle\text{$\begin{gathered} \vec{V}(x, y, z) = (xyz)\vec{i} + (0)\vec{j} + (-x^{2}y)\vec{k}\end{gathered}$}

Sendo V um campo vetorial em R³, podemos dizer que o rotacional de V - denotado por "rot F" - é o produto vetorial entre o operador diferencial e V, isto é:

    \Large\displaystyle\text{$\begin{gathered} \textrm{rot}\:\vec{V} = \nabla\wedge\vec{V}\end{gathered}$}

                 \Large\displaystyle\text{$\begin{gathered} = \bigg(\frac{\partial}{\partial x},\,\frac{\partial}{\partial y},\,\frac{\partial}{\partial z}\bigg) \wedge(X_{V}\vec{i},\,Y_{V}\vec{j},\,Z_{V}\vec{k})\end{gathered}$}

                 \Large\displaystyle\text{$\begin{gathered} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k}\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\X_{V} & Y_{V} & Z_{V}\end{vmatrix}\end{gathered}$}

                 \Large\displaystyle\text{$\begin{gathered} = \begin{vmatrix}\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\Y_{V} & Z_{V}\end{vmatrix}\vec{i} - \begin{vmatrix}\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\X_{V} & Z_{V}\end{vmatrix}\vec{j} + \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y}\\X_{V} & Y_{V}\end{vmatrix}\vec{k}\end{gathered}$}

                \large\displaystyle\text{$\begin{gathered} = \left(\frac{\partial Z_{V}}{\partial y} - \frac{\partial Y_{V}}{\partial z}\right)\vec{i} - \left(\frac{\partial Z_{V}}{\partial x} - \frac{\partial X_{V}}{\partial z}\right)\vec{j} + \left(\frac{\partial Y_{V}}{\partial x} - \frac{\partial X_{V}}{\partial y}\right)\vec{k}\end{gathered}$}

                   \Large\displaystyle\text{$\begin{gathered} = (-x^{2} - 0)\vec{i} - (-2xy - xy)\vec{j} + (0 - xz)\vec{k}\end{gathered}$}

                   \Large\displaystyle\text{$\begin{gathered} = -x^{2}\,\vec{i} + 3xy\,\vec{j} - xz\,\vec{k}\end{gathered}$}      

✅ Portanto, a resposta é:

         \Large\displaystyle\text{$\begin{gathered} \textrm{rot}\:\vec{V} = -x^{2}\,\vec{i} + 3xy\,\vec{j} - xz\,\vec{k}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/52158446
  2. https://brainly.com.br/tarefa/1295497
  3. https://brainly.com.br/tarefa/38763398
  4. https://brainly.com.br/tarefa/1330762
  5. https://brainly.com.br/tarefa/19808046
Anexos:
Perguntas interessantes