Matemática, perguntado por jonathaninspetor, 4 meses atrás

Determine o resultado da integral:

Anexos:

Soluções para a tarefa

Respondido por marcelinons
5

Resposta:

Explicação passo a passo:

Usando a propriedade da soma, podemos separar a integral indefinida em 3 outras integrais:

\int{(y^2+4y-8)dy=\int y^2dy +\int4ydy-\int 8dy

Dessa forma, podemos resolver cada uma individualmente:

\int y^2dy = \frac{y^3}{3}+C

\int 4ydy=4\frac{y^2}{2}+C

\int 8dy=8y+C

Assim, juntando tudo:

\int (y^2+4y-8) dy=\frac{y^3}{3}+C+4\frac{y^2}{2}+C-8y+C = \boxed{\frac{y^3}{3}+2y^2-8y+C \ , \ C\in \mathbb{R}}

Perguntas interessantes