Matemática, perguntado por elenmarkowicz1, 11 meses atrás

Determine o quadrante em que está localizada a extremidade de cada arco a seguir:
A) 2pi/5 rad
B) -10pi/3 rad
C) 19pi/3 rad
D) 2625 graus
E) 29pi/3 rad
F) 1330 graus

Soluções para a tarefa

Respondido por SaraTrindad
3

πrd=180°

assim:

a)\frac{2\pi rad }{5}= \frac{2.180}{5}=\frac{360}{5}=72

está no 1°quadrante

b)\frac{-10\pi rad}{3}=\frac{-10.180}{3}=\frac{-1800}{3}=-600

-600÷360=1 resto -240

2° quadrante

c)\frac{19\pi rad}{3}=\frac{19.180}{3}=\frac{3420}{3}=1140

1140÷360=3 resto 60

60° está no 1° quadrante

d)180       πrd

2625       X

2625πrd=180x

x=2625πrd/180

simplificando

x=175πrd/12

2625÷360=7 resto 105

2°quadrante

e)\frac{29.180}{3}=\frac{5220}{3}=1740

1740÷360=4 resto 300

4° quadrante

f)180    πrd

1330    X

x=1330πrd/180=133πrd/18

1330÷360=3 resto 250

3° quadrante


elenmarkowicz1: A letra B não seria o terceiro quadrante?
SaraTrindad: Seria se fosse positivo, mas quando é negativo é em sentido horário
Perguntas interessantes