Determine o ponto P, pertencente ao eixo das abscissas, sabendo que é eqüidistante dos pontos A( 3; 1 ) e B( -3; 5). Assinale a alternativa correta.
x = -4
x = -3
x = -5
x = -1
x = -2
Soluções para a tarefa
Respondido por
1
Se P pertence ao eixo das abscissas então ele é: P(x,0)
Fórmula da distância de pontos:
![\boxed{d = \sqrt{(x_{f}-x_{i})^{2}+(y_{f}-y_{i})^{2}}} \boxed{d = \sqrt{(x_{f}-x_{i})^{2}+(y_{f}-y_{i})^{2}}}](https://tex.z-dn.net/?f=%5Cboxed%7Bd+%3D+%5Csqrt%7B%28x_%7Bf%7D-x_%7Bi%7D%29%5E%7B2%7D%2B%28y_%7Bf%7D-y_%7Bi%7D%29%5E%7B2%7D%7D%7D)
Pelo enunciado, a distância dos dois pontos à P(x,0) deve ser igual. Portanto:
![d_{AP} = d_{BP}
\\\\
\sqrt{(x_{a}-x_{p})^{2}+(y_{a}-y_{p})^{2}} = \sqrt{(x_{b}-x_{p})^{2}+(y_{b}-y_{p})^{2}}
\\\\
\sqrt{(3-x_{p})^{2}+(1-0)^{2}} = \sqrt{(-3-x_{p})^{2}+(5-0)^{2}}
\\\\
\sqrt{(3-x_{p})^{2}+1} = \sqrt{(-3-x_{p})^{2}+25}
\\\\
elevamos \ ao \ quadrado \ os \ dois \ lados \ pra \ eliminar \ a \ raiz
\\\\
(3-x_{p})^{2}+1 = (-3-x_{p})^{2}+25
\\\\
\not 9-6x_{p}+\not x_{p}^{2}+1 = \not 9+6x_{p}+\not x_{p}^{2}+25
\\\\
6x_{p}+6x_{p} = 1-25
\\\\
12x_{p} = -24 d_{AP} = d_{BP}
\\\\
\sqrt{(x_{a}-x_{p})^{2}+(y_{a}-y_{p})^{2}} = \sqrt{(x_{b}-x_{p})^{2}+(y_{b}-y_{p})^{2}}
\\\\
\sqrt{(3-x_{p})^{2}+(1-0)^{2}} = \sqrt{(-3-x_{p})^{2}+(5-0)^{2}}
\\\\
\sqrt{(3-x_{p})^{2}+1} = \sqrt{(-3-x_{p})^{2}+25}
\\\\
elevamos \ ao \ quadrado \ os \ dois \ lados \ pra \ eliminar \ a \ raiz
\\\\
(3-x_{p})^{2}+1 = (-3-x_{p})^{2}+25
\\\\
\not 9-6x_{p}+\not x_{p}^{2}+1 = \not 9+6x_{p}+\not x_{p}^{2}+25
\\\\
6x_{p}+6x_{p} = 1-25
\\\\
12x_{p} = -24](https://tex.z-dn.net/?f=d_%7BAP%7D+%3D+d_%7BBP%7D%0A%5C%5C%5C%5C%0A%5Csqrt%7B%28x_%7Ba%7D-x_%7Bp%7D%29%5E%7B2%7D%2B%28y_%7Ba%7D-y_%7Bp%7D%29%5E%7B2%7D%7D+%3D+%5Csqrt%7B%28x_%7Bb%7D-x_%7Bp%7D%29%5E%7B2%7D%2B%28y_%7Bb%7D-y_%7Bp%7D%29%5E%7B2%7D%7D%0A%5C%5C%5C%5C%0A%5Csqrt%7B%283-x_%7Bp%7D%29%5E%7B2%7D%2B%281-0%29%5E%7B2%7D%7D+%3D+%5Csqrt%7B%28-3-x_%7Bp%7D%29%5E%7B2%7D%2B%285-0%29%5E%7B2%7D%7D%0A%5C%5C%5C%5C%0A%5Csqrt%7B%283-x_%7Bp%7D%29%5E%7B2%7D%2B1%7D+%3D+%5Csqrt%7B%28-3-x_%7Bp%7D%29%5E%7B2%7D%2B25%7D%0A%5C%5C%5C%5C%0Aelevamos+%5C+ao+%5C+quadrado+%5C+os+%5C+dois+%5C+lados+%5C+pra+%5C+eliminar+%5C+a+%5C+raiz%0A%5C%5C%5C%5C%0A%283-x_%7Bp%7D%29%5E%7B2%7D%2B1+%3D+%28-3-x_%7Bp%7D%29%5E%7B2%7D%2B25%0A%5C%5C%5C%5C%0A%5Cnot+9-6x_%7Bp%7D%2B%5Cnot+x_%7Bp%7D%5E%7B2%7D%2B1+%3D+%5Cnot+9%2B6x_%7Bp%7D%2B%5Cnot+x_%7Bp%7D%5E%7B2%7D%2B25%0A%5C%5C%5C%5C%0A6x_%7Bp%7D%2B6x_%7Bp%7D+%3D+1-25%0A%5C%5C%5C%5C%0A12x_%7Bp%7D+%3D+-24)
![x_{p} = -\frac{24}{12}
\\\\
\boxed{\boxed{x_{p} = -2}} x_{p} = -\frac{24}{12}
\\\\
\boxed{\boxed{x_{p} = -2}}](https://tex.z-dn.net/?f=x_%7Bp%7D+%3D+-%5Cfrac%7B24%7D%7B12%7D%0A%5C%5C%5C%5C%0A%5Cboxed%7B%5Cboxed%7Bx_%7Bp%7D+%3D+-2%7D%7D)
Alternativa E.
Fórmula da distância de pontos:
Pelo enunciado, a distância dos dois pontos à P(x,0) deve ser igual. Portanto:
Alternativa E.
Perguntas interessantes
Matemática,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
Português,
1 ano atrás