Matemática, perguntado por suporteyallahkits, 5 meses atrás

Determine o perimetro do triangulo cujos vertices sao A (1,-2) B (-3,1) e C (1,4).

Soluções para a tarefa

Respondido por auditsys
1

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{A(1,-2)\iff B(-3,1)\iff C(1,4)}

\mathsf{d_{AB} = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}}

\mathsf{d_{AB} = \sqrt{(1 - (-3))^2 + (-2 - 1)^2}}

\mathsf{d_{AB} = \sqrt{(1  + 3)^2 + (-2 - 1)^2}}

\mathsf{d_{AB} = \sqrt{(4)^2 + (-3)^2}}

\mathsf{d_{AB} = \sqrt{16 + 9}}

\mathsf{d_{AB} = \sqrt{25}}

\boxed{\boxed{\mathsf{d_{AB} = 5}}}

\mathsf{d_{AC} = \sqrt{(x_A - x_C)^2 + (y_A - y_C)^2}}

\mathsf{d_{AC} = \sqrt{(1 - 1)^2 + (-2 - 4)^2}}

\mathsf{d_{AC} = \sqrt{(0)^2 + (-6)^2}}

\mathsf{d_{AC} = \sqrt{0 + 36}}

\mathsf{d_{AC} = \sqrt{36}}

\boxed{\boxed{\mathsf{d_{AC} = 6}}}

\mathsf{d_{BC} = \sqrt{(x_B - x_C)^2 + (y_B - y_C)^2}}

\mathsf{d_{BC} = \sqrt{(-3 - 1)^2 + (1 - 4)^2}}

\mathsf{d_{BC} = \sqrt{(-4)^2 + (-3)^2}}

\mathsf{d_{BC} = \sqrt{16 + 9}}

\mathsf{d_{BC} = \sqrt{25}}

\boxed{\boxed{\mathsf{d_{BC} = 5}}}

\mathsf{P = d_{AB} + d_{AC} + d_{BC}}

\mathsf{P = 5 + 6 + 5}

\boxed{\boxed{\mathsf{P = 16}}}

Perguntas interessantes