Matemática, perguntado por duardojunior722, 1 ano atrás

Determine o n° de termos da P.G (128,64,32,...,1/256)

Soluções para a tarefa

Respondido por albertrieben
2
$

Ola Junior

u1 = 128
u2 = 64

q = u2/u1 = 64/128 = 1/2

un = u1*q^(n-1)

1/256 = 128*(1/2)^(n-1)

2^(n-1) = 128*256 = 32768 = 2^15 

n - 1 = 15
n = 16

pronto
Respondido por 3478elc
0


a1 = 1/128 ==> 128^ -1 ==>(2^7)^-1 ==> 2^-7

an = 1/256 ==> 256^ -1 ==>(2^8)^-1 ==> 2^-8


a1.q^n-1 = an


2^-7. (2^ - 1)^n -1 = 2^-8

2^-7. 2^ - n +1 = 2^-8

2^-6. 2^ - n  = 2^-8

2^ - n  = 2^-8 .2^6

- n  = - 8 + 6

-n = - 2(-1)

n = 2

Perguntas interessantes