determine o módulo do número complexo * 1 ponto Imagem sem legenda a) 1 b) 2 c) √2 d) √3
Soluções para a tarefa
Respondido por
76
Resposta: 1- B
2- C
Explicação passo-a-passo:
Classeroom
arieljuraszck:
certo
Respondido por
28
Resposta:
1-b
2-c
Explicação passo-a-passo:
|z| = √a
2 + b2, no exercício a = -1 e b = √3
|z| = √(−1)
2 + (√3)2
|z| = √1 + 3
|z| = √4,
|z| = 2 , logo a alternativa correta é b)
----------------------------------------------------------
Sendo a = -1 e b = -1
|z| = √a
2 + b2
|z| = √(−1)
2 + (−1)2 → |z| = √1 + 1
|z| = √2 é o módulo de z.
Calculando seno e cosseno encontramos:
senθ =
b
|z|
=
−1
√2
.
√2
√2
= −
√2
2
cosθ =
a
|z|
=
−1
√2
.
√2
√2
= −
√2
2
Argumento deve satisfazer: senθ = −
√2
2
e cosθ = −
√2
2
Sendo assim temos: θ = 225° ou
5π
4
rad
Alternativa certa, c)
Perguntas interessantes