Determine o módulo do complexo 2+3i/-5-i
Soluções para a tarefa
Respondido por
11
Se
, então ![|z|=\bigg|\dfrac{z_{1}}{z_{2}}\bigg|=\dfrac{|z_{1}|}{|z_{2}|} |z|=\bigg|\dfrac{z_{1}}{z_{2}}\bigg|=\dfrac{|z_{1}|}{|z_{2}|}](https://tex.z-dn.net/?f=%7Cz%7C%3D%5Cbigg%7C%5Cdfrac%7Bz_%7B1%7D%7D%7Bz_%7B2%7D%7D%5Cbigg%7C%3D%5Cdfrac%7B%7Cz_%7B1%7D%7C%7D%7B%7Cz_%7B2%7D%7C%7D)
_____________________________
![z=\dfrac{2+3i}{-5-i} z=\dfrac{2+3i}{-5-i}](https://tex.z-dn.net/?f=z%3D%5Cdfrac%7B2%2B3i%7D%7B-5-i%7D)
Sendo
e
, então
![z=\dfrac{z_{1}}{z_{2}}~~\Longrightarrow~~|z|=\dfrac{|z_{1}|}{|z_{2}|} z=\dfrac{z_{1}}{z_{2}}~~\Longrightarrow~~|z|=\dfrac{|z_{1}|}{|z_{2}|}](https://tex.z-dn.net/?f=z%3D%5Cdfrac%7Bz_%7B1%7D%7D%7Bz_%7B2%7D%7D%7E%7E%5CLongrightarrow%7E%7E%7Cz%7C%3D%5Cdfrac%7B%7Cz_%7B1%7D%7C%7D%7B%7Cz_%7B2%7D%7C%7D)
Vamos achar o módulo de
e
:
![\bullet\,\,\,z_{1}=2+3i~~\Longrightarrow~~Re(z_{1})=2~~\mathsf{e}~~Im(z_{1})=3\\\\|z_{1}|=\sqrt{\big[Re(z_{1})\big]^{2}+\big[Im(z_{1})\big]^{2}}=\sqrt{2^{2}+3^{2}}=\sqrt{4+9}=\sqrt{13}\\\\\\\bullet\,\,\,z_{2}=-5-i=-5-1i~~\Longrightarrow~~Re(z_{2})=-5~~\mathsf{e}~~Im(z_{2})=-1\\\\|z_{2}|=\sqrt{\big[Re(z_{2})\big]^{2}+\big[Im(z_{2})\big]^{2}}=\sqrt{(-5)^{2}+(-1)^{2}}=\sqrt{25+1}=\sqrt{26} \bullet\,\,\,z_{1}=2+3i~~\Longrightarrow~~Re(z_{1})=2~~\mathsf{e}~~Im(z_{1})=3\\\\|z_{1}|=\sqrt{\big[Re(z_{1})\big]^{2}+\big[Im(z_{1})\big]^{2}}=\sqrt{2^{2}+3^{2}}=\sqrt{4+9}=\sqrt{13}\\\\\\\bullet\,\,\,z_{2}=-5-i=-5-1i~~\Longrightarrow~~Re(z_{2})=-5~~\mathsf{e}~~Im(z_{2})=-1\\\\|z_{2}|=\sqrt{\big[Re(z_{2})\big]^{2}+\big[Im(z_{2})\big]^{2}}=\sqrt{(-5)^{2}+(-1)^{2}}=\sqrt{25+1}=\sqrt{26}](https://tex.z-dn.net/?f=%5Cbullet%5C%2C%5C%2C%5C%2Cz_%7B1%7D%3D2%2B3i%7E%7E%5CLongrightarrow%7E%7ERe%28z_%7B1%7D%29%3D2%7E%7E%5Cmathsf%7Be%7D%7E%7EIm%28z_%7B1%7D%29%3D3%5C%5C%5C%5C%7Cz_%7B1%7D%7C%3D%5Csqrt%7B%5Cbig%5BRe%28z_%7B1%7D%29%5Cbig%5D%5E%7B2%7D%2B%5Cbig%5BIm%28z_%7B1%7D%29%5Cbig%5D%5E%7B2%7D%7D%3D%5Csqrt%7B2%5E%7B2%7D%2B3%5E%7B2%7D%7D%3D%5Csqrt%7B4%2B9%7D%3D%5Csqrt%7B13%7D%5C%5C%5C%5C%5C%5C%5Cbullet%5C%2C%5C%2C%5C%2Cz_%7B2%7D%3D-5-i%3D-5-1i%7E%7E%5CLongrightarrow%7E%7ERe%28z_%7B2%7D%29%3D-5%7E%7E%5Cmathsf%7Be%7D%7E%7EIm%28z_%7B2%7D%29%3D-1%5C%5C%5C%5C%7Cz_%7B2%7D%7C%3D%5Csqrt%7B%5Cbig%5BRe%28z_%7B2%7D%29%5Cbig%5D%5E%7B2%7D%2B%5Cbig%5BIm%28z_%7B2%7D%29%5Cbig%5D%5E%7B2%7D%7D%3D%5Csqrt%7B%28-5%29%5E%7B2%7D%2B%28-1%29%5E%7B2%7D%7D%3D%5Csqrt%7B25%2B1%7D%3D%5Csqrt%7B26%7D)
Logo,
![|z|=\dfrac{|z_{1}|}{|z_{2}|}\\\\\\|z|=\dfrac{\sqrt{13}}{\sqrt{26}}\\\\\\|z|=\dfrac{\sqrt{13}}{\sqrt{2\cdot13}}\\\\\\|z|=\dfrac{\sqrt{13}}{\sqrt{2}\cdot\sqrt{13}}\\\\\\|z|=\dfrac{1}{\sqrt{2}}\\\\\\|z|=\dfrac{\sqrt{2}}{\sqrt{2}\cdot\sqrt{2}}\\\\\\\boxed{\boxed{|z|=\dfrac{\sqrt{2}}{\,2}}} |z|=\dfrac{|z_{1}|}{|z_{2}|}\\\\\\|z|=\dfrac{\sqrt{13}}{\sqrt{26}}\\\\\\|z|=\dfrac{\sqrt{13}}{\sqrt{2\cdot13}}\\\\\\|z|=\dfrac{\sqrt{13}}{\sqrt{2}\cdot\sqrt{13}}\\\\\\|z|=\dfrac{1}{\sqrt{2}}\\\\\\|z|=\dfrac{\sqrt{2}}{\sqrt{2}\cdot\sqrt{2}}\\\\\\\boxed{\boxed{|z|=\dfrac{\sqrt{2}}{\,2}}}](https://tex.z-dn.net/?f=%7Cz%7C%3D%5Cdfrac%7B%7Cz_%7B1%7D%7C%7D%7B%7Cz_%7B2%7D%7C%7D%5C%5C%5C%5C%5C%5C%7Cz%7C%3D%5Cdfrac%7B%5Csqrt%7B13%7D%7D%7B%5Csqrt%7B26%7D%7D%5C%5C%5C%5C%5C%5C%7Cz%7C%3D%5Cdfrac%7B%5Csqrt%7B13%7D%7D%7B%5Csqrt%7B2%5Ccdot13%7D%7D%5C%5C%5C%5C%5C%5C%7Cz%7C%3D%5Cdfrac%7B%5Csqrt%7B13%7D%7D%7B%5Csqrt%7B2%7D%5Ccdot%5Csqrt%7B13%7D%7D%5C%5C%5C%5C%5C%5C%7Cz%7C%3D%5Cdfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%5C%5C%5C%5C%5C%5C%7Cz%7C%3D%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%7B2%7D%5Ccdot%5Csqrt%7B2%7D%7D%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7B%7Cz%7C%3D%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B%5C%2C2%7D%7D%7D)
_____________________________
Sendo
Vamos achar o módulo de
Logo,
Perguntas interessantes