Matemática, perguntado por joycejampa2011, 1 ano atrás

Determine o menor ângulo formado pelos ponteiros de um relógio ao marcarem 12h15min

Soluções para a tarefa

Respondido por Usuário anônimo
73
A cada hora o ponteiro das horas anda 30º. Assim, em 15 min, ele andará \dfrac{30}{4}=7,5^{\circ}.

Às 12h15min, o ponteiro das horas terá percorrido 7,5^{\circ} e o dos minutos estará no número 3.

Veja que, uma volta completa, ou seja, 360º, corresponde a 12 horas. Então, cada hora corresponde a 30º.

Assim, se o ponteiro das horas ficasse parado, teríamos o ponteiro das horas no número 12 e o ponteiro dos minutos no número 3.

Deste modo, o menor ângulo formado seria de 3 x 30º = 90º. Mas, como o ponteiro das horas anda 7,5º nesses 15 min, a resposta é 90 - 7,5= 82,5º.
Respondido por jalves26
18

O menor ângulo formado pelos ponteiros de um relógio ao marcarem 12 h 15 min é: 82,5°

Explicação:

Para calcularmos a medida do menor ângulo formado pelos ponteiros do relógio, podemos utilizar a seguinte fórmula:

α = | 11m - 60h |

              2

Em que:

m é o valor dos minutos

h é o valor das horas

No caso em questão, como são 12 h 15 min, temos:

m = 15

h = 0, pois às 12 inicia uma nova contagem (seria o mesmo que zero hora)

Substituindo na fórmula, fica:

α = | 11.15 - 60.0 |

               2

α = | 165 - 0 |

            2

α = | 165 |

         2

α = 165

       2

α = 82,5°

Pratique mais em:

https://brainly.com.br/tarefa/24711491

Anexos:
Perguntas interessantes