determine o conjunto verdade log2(2x-1)-log2(x+2)=log2(4x+1)-log2(x+10)
Soluções para a tarefa
Respondido por
5
Respondido por
0
Resposta:
log
2
(2x−1)−log
2
(x+2)=log
2
(4x+1)−log
2
(x+10)
log
2
(x+2)
(2x−1)
=log
2
(x+10)
(4x+1)
(2x−1)(x+10)=(x+2)(4x+1)
2x
2
+20x−x−10=4x
2
+x+8x+2
2x
2
−4x
2
+19x−9x−12=0
−2x
2
+10x−12=0
\begin{gathered}-2x^2+10x-12=0\\\\ x^2-5x+6 = 0\\\\\ \Delta = 25-24\\\\ \Delta = 1\\\\\ x^1 = 3\\\\ x^2 = 2\\\\\ \boxed{S(2,3)}\end{gathered}
−2x
2
+10x−12=0
x
2
−5x+6=0
Δ=25−24
Δ=1
x
1
=3
x
2
=2
S(2,3)
Perguntas interessantes
História,
9 meses atrás
História,
9 meses atrás
Inglês,
9 meses atrás
História,
1 ano atrás
Sociologia,
1 ano atrás
Informática,
1 ano atrás
Matemática,
1 ano atrás