determine o conjunto verdade das equações a) x²+10y²+9=0
b) 9x4+5y²-4=0
Soluções para a tarefa
Resposta:
Explicação passo-a-passo:
a) Para melhor compreensão veja no exemplo abaixo como essa transformação acontece e como chegamos às raízes da equação biquadrada.
y4 – 10y2 + 9 = 0 → equação biquadrada
(y2)2 – 10y2 + 9 = 0 → também pode ser escrita assim.
Substituindo variáveis: y2 = x, isso significa que onde for y2 iremos colocar x.
x2 – 10x + 9 = 0 → agora resolvemos essa equação do 2º grau encontrando x` e x``
a = 1 b = -10 c = 9
∆ = b2 – 4ac
∆ = (-10)2 – 4 . 1 . 9
∆ = 100 – 36
∆ = 64
x = - b ± √∆
2a
x = -(-10) ± √64
2 . 1
x = 10 ± 8
2
x’ = 9
x” = 1
Essas são as raízes da equação x2 – 10x + 9 = 0, para encontrarmos as raízes da equação biquadrada y4– 10y2 + 9 = 0 devemos substituir os valores de x’ e x” em y2 = x.
Para x = 9
y2 = x
y2 = 9
y = √9
y = ± 3
Para x = 1
y2 = x
y2 = 1
y = √1
y = ±1
Portanto, a solução da equação biquadrada será:
S = {-3, -1, 1, 3}.
y e Z
b) 9x+4+5y² - 4=0
9x+ 5y²=0 ( cancela os 4 por terem sinais opostos)
x= -5y²/ 9
y e R