Matemática, perguntado por AlfonsoCapone, 8 meses atrás

Determine o conjunto solução para cada uma das seguintes desigualdades:
1.1) x2 + 3x + 2 ≥ 0.
1.2) 3x + 5/ x − 5 < 0.

Soluções para a tarefa

Respondido por niltonjunior20oss764
1

1.1)

x^2+3x+2\geq0

a=1,b=3,c=2\ \therefore\ x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\ \therefore

x=\dfrac{-3\pm\sqrt{3^2-4(1)(2)}}{2(1)}=\dfrac{-3\pm1}{2}=\boxed{-2}\ \text{e}\ \boxed{-1}

\text{Analisando o }\mathrm{gr\acute{a}fico}\ \to\ \boxed{x\leq-2}\ \text{e}\ \boxed{x\geq-1}

\boxed{\mathbb{S}=\left\{x\in\mathbb{R}\ |\ x\in(-\infty,-2]\cup[-1,\infty)\right\}}

1.2)

\dfrac{3x+5}{x-5}&lt;0

\text{Caso\ 1:}\ \boxed{3x+5&gt;0}\ \text{e}\ \boxed{x-5&lt;0}\ \therefore

3x+5&gt;0\ \therefore\ \boxed{x&gt;-\dfrac{5}{3}}

x-5&lt;0\ \therefore\ \boxed{x&lt;5}

\text{Caso 2:}\ \boxed{3x+5&lt;0}\ \text{e}\ \boxed{x-5&gt;0}

3x+5&lt;0\ \therefore\ \boxed{x&lt;-\dfrac{5}{3}}

x-5&gt;0\ \therefore\ \boxed{x&gt;5}

\mathrm{H\acute{a}\ tr\hat{e}s\ intervalos\ para}\ \text{analisar:}\\\\ x&lt;-\dfrac{5}{3}\ \to\ \text{p. ex.}\ x=-2\ \to\ \dfrac{-1}{-7}=\dfrac{1}{7}\nless0

-\dfrac{5}{3}&lt;x&lt;5\ \to\ \text{p. ex.}\ x=0\ \to\ \dfrac{5}{-5}=-1&lt;0

x&gt;5\ \to\ \text{p. ex.}\ x=6\ \to\ \dfrac{23}{1}=23\nless0

\mathrm{O\ \acute{u}nico\ intervalo\ para\ o\ qual\ a\ desigualdade\ \acute{e}}\ \boxed{-\dfrac{5}{3}&lt;x&lt;5}

\boxed{\mathbb{S}=\left\{x\in\mathbb{R}\ \bigg|\ -\dfrac{5}{3}&lt;x&lt;5\right\}}

Perguntas interessantes