determine o conjunto solução:
Anexos:
Soluções para a tarefa
Respondido por
1
essa é facil, quando comparação em potencilização e temos asa bases iguais, iguinoramos as bases e trabalhamos só com os espoentes.
a) (2x ≤ 3) = (x ≤ 3/2) ou (x ≤ 1,5)
b) (2x>2) =(x > 2/2) = (x>1)
c) Primeiro temos que deixar as bases iguais, 8 x 8 = 8² = 64
(x ≥ 2)
d) Primeiro temos que deixar as bases iguais, (7 x 7 = 7² = 49) e (7 x 7 x 7 = 7³ = 343)
(2.(x+1) ≤ 3) = (2x+2 ≤ 3) = (2x ≤ 3-2) = (2x ≤ 1) = (x ≤ 1/2) ou (x≤ 0,5)
a) (2x ≤ 3) = (x ≤ 3/2) ou (x ≤ 1,5)
b) (2x>2) =(x > 2/2) = (x>1)
c) Primeiro temos que deixar as bases iguais, 8 x 8 = 8² = 64
(x ≥ 2)
d) Primeiro temos que deixar as bases iguais, (7 x 7 = 7² = 49) e (7 x 7 x 7 = 7³ = 343)
(2.(x+1) ≤ 3) = (2x+2 ≤ 3) = (2x ≤ 3-2) = (2x ≤ 1) = (x ≤ 1/2) ou (x≤ 0,5)
Perguntas interessantes
Biologia,
9 meses atrás
Inglês,
9 meses atrás
História,
9 meses atrás
Matemática,
1 ano atrás
ENEM,
1 ano atrás