Matemática, perguntado por abeleoliveira1, 8 meses atrás

Determine o coeficiente angular da reta R que passa pelos pontos A (3,2) B (-4,-5)​

Soluções para a tarefa

Respondido por juniorrocha96
1

Resposta:

coeficiente angular= 1

Explicação passo-a-passo:

a equação da reta tem o formato:

y=ax+b

no qual a é o coeficiente angular, e b o coeficiente linear.

com isso, aplicando na equação da reta os pontos A e B dados no problema:

aplicando A:

A(3,2)

x é 3, y é 2

2=a*3+b

aplicando B:

B(-4,-5)

x é -4, y é -5

-5=a*(-4)+b

com isso, temos um sistema.

\left \{ {{3a+b=2} \atop {-4a+b=-5}} \right.

para resolvê-lo, basta subtrair uma equação da outra.

3a-(-4a)=3a+4a=7a

b-b=0

2-(-5)=2+5=7

então:

7a+0=7

7a=7

a=7/7

a=1 <------ coeficiente angular da reta

para descobrir o coeficiente linear, basta substituir o a encontrado em uma das equações do sistema.

3*1+b=2

b=2-3

b=-1

a equação da reta fica:

y=x-1

Perguntas interessantes