Matemática, perguntado por evellineduarda18, 11 meses atrás

Determine o 8° termo da PA (-6, 4,...)​

Soluções para a tarefa

Respondido por viniciusszillo
1

Olá! Segue a resposta com algumas explicações.

(I)Interpretação do problema:

Da P.A. (-6, 4, ...), tem-se:

a)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição: -6

b)oitavo termo (a₈): ?

c)número de termos (n): 8 (Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 8ª), equivalente ao número de termos.)

d)Embora não se saiba o valor do oitavo termo, apenas pela observação dos dois primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores tendem a sempre crescem e, para que isso aconteça, necessariamente se deve somar um termo positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.

===========================================

(II)Determinação da razão (r) da progressão aritmética:

Observação 1: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.

r = a₂ - a₁ ⇒

r = 4 - (-6) ⇒

r = 4 + 6 ⇒

r = 10

===========================================

(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A, para obter-se o oitavo termo:

an = a₁ + (n - 1) . r ⇒

a₈ = a₁ + (n - 1) . (r) ⇒

a₈ = (-6) + (8 - 1) . (10) ⇒

a₈ = (-6) + (7) . (10) ⇒         (Veja a Observação 2.)

a₈ = (-6) + 70 ⇒

a₈ = 64

Observação 2:  Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam sempre em sinal de positivo (+).

Resposta: O 8º termo da P.A(-6, 4, ...) é 64.

=======================================================

DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA

→Substituindo a₈ = 64 na fórmula do termo geral da PA e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o oitavo termo realmente corresponde ao afirmado:

an = a₁ + (n - 1) . r ⇒

a₈ = a₁ + (n - 1) . (r) ⇒

64 = a₁ + (8 - 1) . (10) ⇒

64 = a₁ + (7) . (10) ⇒

64 = a₁ + 70 ⇒        (Passa-se 70 ao 1º membro e altera-se o sinal.)

64 - 70 = a₁ ⇒  

-6 = a₁ ⇔                (O símbolo ⇔ significa "equivale a".)

a₁ = -6                     (Provado que a₈ = 64.)

Veja outras tarefas relacionadas à progressão aritmética e resolvidas por mim:

brainly.com.br/tarefa/25222215

brainly.com.br/tarefa/25222226

brainly.com.br/tarefa/23995765

https://brainly.com.br/tarefa/22702057

https://brainly.com.br/tarefa/22618053

Perguntas interessantes