Determine o 51º termo da PA (3, 6, 9, 12, 15, 18, ...). *
Soluções para a tarefa
resolução!
r = a2 - a1
r = 6 - 3
r = 3
a51 = a1 + 50r
a51 = 3 + 50 * 3
a51 = 3 + 150
a51 = 153
Olá! Segue a resposta com algumas explicações.
(I)Interpretação do problema:
Da sequência (3, 6, 9, 12, 15, 18, ...), tem-se que:
a)cada elemento nela presente, exceto o primeiro, será o resultado do imediatamente anterior adicionado a um mesmo valor, a saber, 3 unidades (por exemplo, 6=3+3 e 9=3+6). Se um comportamento deste tipo acontece (soma de um mesmo valor para formar os termos seguintes), tem-se uma sequência numérica especial, denominada progressão aritmética (P.A.).
b)progressão aritmética é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;
c)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição: 3
d)51º termo (a₇₉) - quinquagésimo primeiro elemento da sequência: ?
e)número de termos (n): 51
- Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 51ª), equivalente ao número de termos.
f)Embora não se saiba o valor do quinquagésimo primeiro termo, pela observação dos dois primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos crescem, afastando-se do zero, à direita deste, pensando-se na reta numérica e, para que isto aconteça, necessariamente se deve somar um valor constante positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero, porque o sexto termo é positivo e a ele e aos próximos será sempre somado um valor positivo.
===========================================
(II)Determinação da razão (r) da progressão aritmética:
Observação 1: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.
r = a₂ - a₁ ⇒
r = 6 - 3 ⇒
r = 3 (Razão positiva, conforme prenunciado no item f acima.)
===========================================
(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o 51º termo:
an = a₁ + (n - 1) . r ⇒
a₅₁ = a₁ + (n - 1) . (r) ⇒
a₅₁ = 3 + (51 - 1) . (3) ⇒
a₅₁ = 3 + (50) . (3) ⇒
a₅₁ = 3 + 150 ⇒
a₅₁ = 153
RESPOSTA: O 51º termo da P.A. (3, 6, 9, 12, ...) é 153.
OBSERVAÇÃO 2: Veja, em anexo, a comprovação de que a resposta acima está correta.
→Veja outras tarefas relacionadas à determinação de termos em sequências do tipo progressão aritmética e resolvidas por mim:
brainly.com.br/tarefa/30860188
brainly.com.br/tarefa/30805634
brainly.com.br/tarefa/12963811
brainly.com.br/tarefa/29994834
brainly.com.br/tarefa/29841264