Determine o 25o termo da PA(3, 9, 15,…)
Soluções para a tarefa
Explicação passo-a-passo:
Descobrindo a razão da P.A, tenho que subtrair o primeiro termo do segundo, 9-3=6, a razão é 6, usando a fórmula do termo geral
Olá! Segue a resposta com algumas explicações.
(I)Interpretação do problema:
Da sequência (3, 9, 15,...), tem-se que:
a)cada elemento nela presente é o resultado do imediatamente anterior adicionado a um mesmo valor, a saber, 6 unidades. Se um comportamento deste tipo acontece, tem-se uma sequência numérica especial, denominada progressão aritmética (P.A.).
b)progressão aritmética é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão.
c)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição: 3 (é o primeiro elemento da sequência e consiste no único número não formado pela soma de um anterior com a razão);
d)vigésimo quinto termo (a₂₅): ?
e)número de termos (n): 25
- Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 25ª), equivalente ao número de termos.
f)Embora não se saiba o valor do vigésimo quinto termo, apenas pela observação dos dois primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos crescem, afastam-se do zero, para a direita dele, pensando-se na reta numérica e, para que isto aconteça, necessariamente se deve somar um valor constante positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.
===========================================
(II)Determinação da razão (r) da progressão aritmética:
Observação: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.
r = a₂ - a₁ ⇒
r = 9 - 3 ⇒
r = 6 (Razão positiva, conforme prenunciado no item f acima.)
===========================================
(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o vigésimo quinto termo:
an = a₁ + (n - 1) . r ⇒
a₂₅ = a₁ + (n - 1) . (r) ⇒
a₂₅ = 3 + (25 - 1) . (6) ⇒
a₂₅ = 3 + (24) . (6) ⇒ (Veja a Observação 2.)
a₂₅ = 3 + 144 ⇒
a₂₅ = 147
Observação 2: Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam sempre em sinal de positivo (+).
Resposta: O vigésimo quinto termo da P.A. (3, 9, 15...) é 147.
====================================================
DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA
→Substituindo a₂₅ = 147 fórmula do termo geral da P.A. e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o vigésimo quinto termo realmente corresponde ao afirmado:
an = a₁ + (n - 1) . r ⇒
a₂₅ = a₁ + (n - 1) . (r) ⇒
147 = a₁ + (25 - 1) . (6) ⇒
147 = a₁ + (24) . (6) ⇒
147 = a₁ + 144 ⇒
147 - 144 = a₁ ⇒
3 = a₁ ⇔ (O símbolo ⇔ significa "equivale a".)
a₁ = 3 (Provado que a₂₅ = 147.)
→Veja outras tarefas relacionadas à determinação de termos em progressão aritmética e resolvidas por mim:
https://brainly.com.br/tarefa/5289760
brainly.com.br/tarefa/322582
brainly.com.br/tarefa/28146555
brainly.com.br/tarefa/27997528
brainly.com.br/tarefa/1185711
brainly.com.br/tarefa/12967381
brainly.com.br/tarefa/27992036
brainly.com.br/tarefa/1948447
brainly.com.br/tarefa/18095215