Matemática, perguntado por cah5022, 11 meses atrás

Determine o 20° elemento dos termos da seguinte progressão aritmética (2,7,12,17)​

Soluções para a tarefa

Respondido por farjuly4
6

Razão:

r = a2 - a1

r = 7 - 2

r = 5

20 elemento:

a20 = a1 + 19.r

a20 = 2 + 19.5

a20 = 2 + 95

a20 = 97

Resposta: 97

Respondido por viniciusszillo
1

Olá! Segue a resposta com algumas explicações.

(I)Interpretação do problema:

Da sequência (2, 7, 12, 17,...), tem-se:

a)progressão aritmética (P.A.) é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;

b)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição:2

c)vigésimo segundo termo (a₂₀): ?

d)número de termos (n): 20 (Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 20ª), equivalente ao número de termos.)

e)Embora não se saiba o valor do vigésimo termo, apenas pela observação dos três primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos, crescem (embora negativos, há uma aproximação do zero) e, para que isto aconteça, necessariamente se deve somar um termo positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.

===========================================

(II)Determinação da razão (r) da progressão aritmética:

Observação 1: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.

r = a₂ - a₁ ⇒

r = 7 - 2 ⇒

r = 5  (Razão positiva, conforme prenunciado no item e acima.)

===========================================

(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o vigésimo termo:

an = a₁ + (n - 1) . r ⇒

a₂₀ = a₁ + (n - 1) . (r) ⇒

a₂₀ = 2 + (20 - 1) . (5) ⇒

a₂₀ = 2 + (19) . (5) ⇒         (Veja a Observação 2.)

a₂₀ = 2 + 95 ⇒

a₂₀ = 97

Observação 2:  Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam sempre em sinal de positivo (+).

Resposta: O 20º termo da P.A.(2, 7, 12, ...) é 97.

=======================================================

DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA

→Substituindo a₂₀ = 97 fórmula do termo geral da PA e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o vigésimo termo realmente corresponde ao afirmado:

an = a₁ + (n - 1) . r ⇒

a₂₀ = a₁ + (n - 1) . (r) ⇒

97 = a₁ + (20 - 1) . (5) ⇒

97 = a₁ + (19) . (5) ⇒

97 = a₁ + 95 ⇒    (Passa-se 95 ao 1º membro e altera-se o sinal.)

97 - 95 = a₁ ⇒  

2 = a₁ ⇔              (O símbolo ⇔ significa "equivale a".)

a₁ = 2                   (Provado que a₂₀ = 97.)

→Veja outras tarefas relacionadas à determinação de termos em progressão aritmética e resolvidas por mim:

brainly.com.br/tarefa/5848781

brainly.com.br/tarefa/26401614

brainly.com.br/tarefa/9193241

brainly.com.br/tarefa/25120171

brainly.com.br/tarefa/19721373

brainly.com.br/tarefa/26348704

brainly.com.br/tarefa/2945290

brainly.com.br/tarefa/12000889

brainly.com.br/tarefa/12838247

brainly.com.br/tarefa/24732610

brainly.com.br/tarefa/7300171

Perguntas interessantes