Determine m para que o triângulo ABC seja retangulo em B, sendo A(7,8), B(4,4) e C(m,7)
Soluções para a tarefa
Respondido por
2
DAC^2 = DBC^2 + DAB^2
DAC^2 = (Ax - Cx)^2 + (Ay - Cy)^2
DAC^2 = (7 - m)^2 - (8 - 7)^2
DAC^2 = (7)^2 - 2(7)(m) + (m)^2 + (1)^2
DAC^2 = 49 - 14m + m^2 + 1
DAC^2 = m^2 - 14m + 49 + 1
DAC^2 = m^2 - 14m + 50
====================================
DBC^2 = (Bx - Cx)^2 + (By - Cy)^2
DBC^2 = (4 - m) + (4 - 7)^2
DBC^2 = (4)^2 - 2(4)(m) + (m)^2 + (-3)^2
DBC^2 = 16 - 8m + m^2 + 9
DBC^2 = m^2 - 8m + 16 + 9
DBC^2 = m^2 - 8m + 25
====================================
DAC^2 = (Ax - Bx)^2 + (Ay - By)^2
DAC^2 = (7 - 4)^2 + (8- 4)^2
DAC^2 = (3)^2 + (4)^2
DAC^2 = 9 + 16
DAC^2 = 25
====================================
DAC^2 = DBC^2 + DAB^2
m^2 - 14m + 50 = m^2 - 8m + 25 + 25
m^2 - 14m + 50 = m^2 - 8m + 50
- 14m + 50 = - 8m + 50
- 14m + 8m = 50 - 50
- 6m = 0
m = 0
......___
.......-6
m = 0
DAC^2 = (Ax - Cx)^2 + (Ay - Cy)^2
DAC^2 = (7 - m)^2 - (8 - 7)^2
DAC^2 = (7)^2 - 2(7)(m) + (m)^2 + (1)^2
DAC^2 = 49 - 14m + m^2 + 1
DAC^2 = m^2 - 14m + 49 + 1
DAC^2 = m^2 - 14m + 50
====================================
DBC^2 = (Bx - Cx)^2 + (By - Cy)^2
DBC^2 = (4 - m) + (4 - 7)^2
DBC^2 = (4)^2 - 2(4)(m) + (m)^2 + (-3)^2
DBC^2 = 16 - 8m + m^2 + 9
DBC^2 = m^2 - 8m + 16 + 9
DBC^2 = m^2 - 8m + 25
====================================
DAC^2 = (Ax - Bx)^2 + (Ay - By)^2
DAC^2 = (7 - 4)^2 + (8- 4)^2
DAC^2 = (3)^2 + (4)^2
DAC^2 = 9 + 16
DAC^2 = 25
====================================
DAC^2 = DBC^2 + DAB^2
m^2 - 14m + 50 = m^2 - 8m + 25 + 25
m^2 - 14m + 50 = m^2 - 8m + 50
- 14m + 50 = - 8m + 50
- 14m + 8m = 50 - 50
- 6m = 0
m = 0
......___
.......-6
m = 0
Perguntas interessantes