Determine dois números inteiros e positivos tais que o produto entre eles seja 140,e a diferença entre eles seja 4
Soluções para a tarefa
Respondido por
44
Estimada Kelly,
Basicamente, é preciso transformar o enunciado (o que foi dito) em equações.
Ficaria assim:
Chamarei o primeiro número de r e o segundo número de k.
Transformando o enunciado em equações:
r.k=140 ( o produto, ou seja, a multiplicação entre eles resulta em 140).
r-k=4 ( a diferença, ou seja, o primeiro menos o segundo, tem por resultado 4).
Com a segunda equação (r-k=4), descubro que r= 4+k
Substituindo o r na primeira equação por 4+k, temos:
(4+k).k=140.
Desenvolvendo a equação, temos
+ 4k -140=0
Trata-se de uma equação de segundo grau, de modo que utilizaremos a fórmula de Bháskara.
k=-b±√Δ Vamos calcularo Delta Δ
2a
Lembrando que a=, b=4, e c=-140.
Δ=b²-4*a*c Δ=4²-4*1* - 140 Δ=16 -4* -140 (menos vezes menos, dá mais)
Δ= 16 + 560 Δ= 576
k=-4±√576
2*1
k1=-4 +24 k1=-4 +24 k1= 20 k1=10
2*1 2 2
k2=-4 -24 k2=-4 -24 k2= -28 k2=-14
2*1 2 2
Haja vista que, no enunciado diz que são dois números inteiros e positivos, descarta-se k2 por ser negativo. Logo, k=10.
Se k=10 e r= 4+k, basta substituir k na equação para descobrir r.
Portanto, r= 4 + 10. r =14
Assim, os dois números que satisfazem os critérios do enunciado são 10 e 14.
Basicamente, é preciso transformar o enunciado (o que foi dito) em equações.
Ficaria assim:
Chamarei o primeiro número de r e o segundo número de k.
Transformando o enunciado em equações:
r.k=140 ( o produto, ou seja, a multiplicação entre eles resulta em 140).
r-k=4 ( a diferença, ou seja, o primeiro menos o segundo, tem por resultado 4).
Com a segunda equação (r-k=4), descubro que r= 4+k
Substituindo o r na primeira equação por 4+k, temos:
(4+k).k=140.
Desenvolvendo a equação, temos
+ 4k -140=0
Trata-se de uma equação de segundo grau, de modo que utilizaremos a fórmula de Bháskara.
k=-b±√Δ Vamos calcularo Delta Δ
2a
Lembrando que a=, b=4, e c=-140.
Δ=b²-4*a*c Δ=4²-4*1* - 140 Δ=16 -4* -140 (menos vezes menos, dá mais)
Δ= 16 + 560 Δ= 576
k=-4±√576
2*1
k1=-4 +24 k1=-4 +24 k1= 20 k1=10
2*1 2 2
k2=-4 -24 k2=-4 -24 k2= -28 k2=-14
2*1 2 2
Haja vista que, no enunciado diz que são dois números inteiros e positivos, descarta-se k2 por ser negativo. Logo, k=10.
Se k=10 e r= 4+k, basta substituir k na equação para descobrir r.
Portanto, r= 4 + 10. r =14
Assim, os dois números que satisfazem os critérios do enunciado são 10 e 14.
kellygata201065:
obrigado
Perguntas interessantes
Matemática,
10 meses atrás
Química,
10 meses atrás
Português,
10 meses atrás
Matemática,
1 ano atrás
Filosofia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás