Determine dois números inteiros e consecutivos tais que a soma de seus inversos seja 11/30
Soluções para a tarefa
Respondido por
9
1/n+1/(n+1)=11/30
(n+1 + n)/(n*(n+1)=11/30
2n+1=11*(n*(n+1)/30
2n+1=11*(n²+n)/30
2n+1=(11n²+11n)/30
60n+30=11n²+11n
11n²+11n-60n-30=0
11n²-49n-30=0
Δ=(-49)²-4*11*(-30)
Δ=2401+1320=3721
n'=(49+√3721)/2*11
n'=(49+61)/22
n'=110/22
n'=5
n''=(49-61)/22
n''=-12/22
n''=-6/11 (não é inteiro então descartaremos!)
n=5
(n+1)=5+1=6
Os números são 5 e 6
Espero que tenha entendido!
(n+1 + n)/(n*(n+1)=11/30
2n+1=11*(n*(n+1)/30
2n+1=11*(n²+n)/30
2n+1=(11n²+11n)/30
60n+30=11n²+11n
11n²+11n-60n-30=0
11n²-49n-30=0
Δ=(-49)²-4*11*(-30)
Δ=2401+1320=3721
n'=(49+√3721)/2*11
n'=(49+61)/22
n'=110/22
n'=5
n''=(49-61)/22
n''=-12/22
n''=-6/11 (não é inteiro então descartaremos!)
n=5
(n+1)=5+1=6
Os números são 5 e 6
Espero que tenha entendido!
Perguntas interessantes
Português,
8 meses atrás
Geografia,
8 meses atrás
Matemática,
8 meses atrás
Biologia,
1 ano atrás
Química,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás