Matemática, perguntado por lucasmaia041089, 4 meses atrás

determine dois numeros impares positivos e consecutivos cujo o produto e 75

Soluções para a tarefa

Respondido por gabrielcguimaraes
1

Se um dos ímpares é x, o outro é x+2. Seu produto é 75:

x(x+2) = 75\\x^2 + 2x - 75 = 0\\\\\cfrac{-2\pm\sqrt{2^2 - 4 \cdot 1 \cdot (-75)} }{2 \cdot 1} \\\\= \cfrac{-2\pm\sqrt{4 + 300} }{2} \\\\= \cfrac{-2\pm\sqrt{304} }{2}

Espera aí! Raiz de 304 não é inteiro. Portanto não há números ímpares consecutivos cujo produto é 75.

Perguntas interessantes