determine dois números IMPARES cujo produto seja 143
Soluções para a tarefa
x . (x + 2) = 143
x² + 2x = 143
x² + 2x = 143 = 0
Por Bhaskara:
Encontrar o valor de Δ
Δ = b² - 4.a.c
Δ = 2² - 4.1.-143
Δ = 4 + 572
Δ = 576
===
x' = -b + √576 / 2.1
x' = -2 + 24 / 2
x' = 22 / 2
x' = 11
x'' = -b - √576 / 2.1
x' = -2 - 24 / 2
x' = -24 / 2
x' = -13
Os número são:
(11, 13) ou (-11, -13)
Vamos chamar os números impares consecutivos de ''X'' .
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
1º Número = X
2º Números = X + 2
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
A questão nos informa que o produto entre eles , é 143 .
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Note , que se transformou em uma equação de segundo grau. Vamos calcular primeiro o delta .
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Como o delta é positivo , a equação admite raízes . Vamos encontrar os valores de ''X'' agora :
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
S { 11 e -13 }
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
PROVA REAL ...
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
x' = Primeira solução
Note que com o número 11 , o produto com o 13 ( próximo número impar , já que são consecutivos ) , realmente é 143.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
x'' = Segunda solução
Note que com o número -13 , o produto com -11 ( próximo número impar , já que são consecutivos ) , realmente é 143.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Logo os dois números consecutivos são 11 e 13 e -11 e -13.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃