Determine, com aproximação de uma casa decimal, a medida da projeção do cateto sobre a hipotenusa em um triângulo retângulo, sabendo que a hipotenusa mede 15 cm e o menor cateto mede 8 cm
Soluções para a tarefa
Respondido por
0
Explicação passo-a-passo:
Projeção → k
Hipotenusa → hip.
Cateto → cat.
k = ?
hip = 15 cm
cat = 8cm
----------------------------------------
cat ² = hip • k'
k' = cat² / hip = 8² / 15²
k' = 64 / 225 = 0,2844... ≈ 0,3
Respondido por
0
O valor da projeção do menor cateto sobre a hipotenusa é de 4,7 cm.
Fórmula para calcular a projeção do cateto sobre a hipotenusa:
c ² = h × p
Sendo:
- c = cateto = 8 cm
- h = hipotenusa = 15 cm
- p = projeção
Substituindo na fórmula, temos:
8² = 15 × p
64/15 = p
p ≅ 4,7 cm
Observação: a resposta já está com a aproximação de uma casa decimal.
O que é a projeção do cateto:
A projeção do cateto é a representação do cateto em questão sobre a hipotenusa. Inclusive, os dois catetos podem ser projetados sobre a hipotenusa, o que os "separa" é a altura da hipotenusa até o vértice entre os catetos.
Acesse para saber mais sobre catetos: brainly.com.br/tarefa/5650046
#SPJ4
Perguntas interessantes
Matemática,
4 meses atrás
Inglês,
4 meses atrás
Saúde,
4 meses atrás
Geografia,
10 meses atrás
Português,
10 meses atrás