Determine as raízes (zeros) reais de cada uma das funções de R em R dadas pelas seguintes leis:
a) y = 2x² – 3x + 1
b) y = 4x – x²
c) y = -x² + 2x + 15
d) y = 9x² - 1
e) y = -x² + 6x – 9
f) y = 3x²
g) y = x² – 5x + 9
h) y = -x² + 2
i) y = x² - x - 6
j) y = (x + 3) ÷ (x - 5)
Soluções para a tarefa
Respondido por
30
Resposta:
a) y = 2x² – 3x + 1
Δ=b²-4.a.c
Δ=(-3)²-4.2.1
Δ=9-8
Δ=1
x=-b±√Δ÷2a
x=+3±1÷4
x´=1
x´´=1/2
b) y = 4x – x²
Δ=b²-4.a.c
Δ=4²-4.-1.0
Δ=16
x=-b±√Δ÷2a
x=-4±4÷-2
x´=+4
x´´=0
c) y = -x² + 2x + 15
Δ=b²-4.a.c
Δ=2²-4.-1.15
Δ=64
x=-b±√Δ÷2a
x=-2±8÷-2
x´=+5
x´´=-3
d) y = 9x² - 1
0=9x²-1
9x²=+1
x´=+√1/9
x´´=-√1/9
e) y = -x² + 6x – 9
Δ=b²-4.a.c
Δ=6²-4.-1.-9
Δ=36-36
Δ=0
x=-b±√Δ÷2a
x=-6÷-2
x´=x´´=+3
f) y = 3x²
Δ=b²-4.a.c
Δ=0-4.3.0
Δ=0
x=-b±√Δ÷2a
x´=x´´=0
g) y = x² – 5x + 9
Δ=b²-4.a.c
Δ=(-5)²-4.1.9
Δ=25-36
Δ=-11
x´=x´´=∉
h) y = -x² + 2
+x²=+2
x´=+√2
x´´=-√2
i) y = x² - x - 6
Δ=b²-4.a.c
Δ=(-1)²-4.1.-6
Δ=25
x=-b±√Δ÷2a
x=+1±5÷2
x´=3
x´´=-2
j) y = (x + 3) ÷ (x - 5)
y=(x+3).(x+5) ÷ (x-5).(x+5)
y=x²+5x+3x+15÷x²-5x+5x-25
y=x²+8x+15÷x²-25
x²+8x+15=0
x´= -15/2=-7,5
x´´= -1/2=-0,5
x²-25=0
x²=25
x´=+5
x´´=-5
∴x´=-7,5 e x´´=+5
Perguntas interessantes
Química,
6 meses atrás
Matemática,
6 meses atrás
Inglês,
7 meses atrás
Artes,
7 meses atrás
Matemática,
1 ano atrás