Determine as medidas indicadas em cada triângulo retângulo
Soluções para a tarefa
Em primeiro lugar, deve-se lembrar das Relações Métricas presentes em um Triângulo Retângulo.
Considere o Triângulo Retângulo anexado.
As relações métricas são:
h² = m × n
b² = m × a
c² = n × a
a × h = b × c
Além de Pitágoras: a² = b² + c²
a) h² = m × n
5² = m × 5
m = 25/5
m = 5cm
a = m + n = 5 + 5
a = 10cm
b² = m × a = 5 × 10 = 50
b = √50
b = 5√2cm
c² = n × a = 5 × 10 = 50
c = √50
c = 5√2cm
As letras b, c e d estão anexadas.
Abraço <3
As medidas indicadas em cada triângulo são:
a) a = 10cm, m = 5 cm, b = , c =
b) q = 10 cm, n = , r = 6 cm, h = .
c) x = 29cm, h = , z = cm, y = , t =
d) y = 4 cm, h = 6 cm, n = , p = .
Informação útil:
O teorema de Pitágoras é definido por:
As relações métrica em um triângulo retângulo são:
- a * h = b * c
- b² = m * a
- c² = n * a
- h² = m * n
Onde h é a altura do triângulo, m e n são as medidas resultantes da divisão que o segmento da altura gera na hipotenusa. a representa a hipotenusa, b representa o maior cateto e c representa o menor cateto.
Explicação passo a passo:
a) neste item devemos determinar a medida m, que é parte da hipotenusa, e a medida dos dois catetos do triângulo (b e c). Observando a figura, temos que a altura é h = 5 cm, e a medida n é igual a 5 cm. Assim, temos:
⇒⇒
Logo, m = 5 cm.
Como a = m + n = 5cm + 5cm = 10cm, podemos determinar b e c fazendo:
⇒
⇒
b) neste item devemos determinar a medida n, que é parte da hipotenusa, a medida do menor cateto do triângulo (c) e a altura h do triângulo. Observando a figura, temos que o maior cateto é b = 8 cm, e a medida m é igual a cm. Assim, temos:
b² = a*m ⇒
Logo a = q = 10 cm. Como a = m + n, temos:
n = a - m =
Logo, n = cm
A altura h do triângulo é:
⇒ ⇒
Assim, a altura do triângulo é h = cm.
O cateto menor é:
⇒ ⇒
Logo, c = r = 6 cm.
c) Neste item devemos calcular a altura t do triângulo, a medida da hipotenusa x, e as medidas m e n, que agora são, respectivamente, z e y. Observando a figura, temos:
pelo teorema de Pitágoras: ⇒
Assim, a hipotenusa mede x = 29 cm.
A altura t do triângulo é:
⇒
As medidas z e y são:
⇒ ⇒
⇒ ⇒
d) Neste item devemos calcular a medida y, a medida da altura h, e dos catetos b e c, representados por n e p.
Da relação a = m + n, temos:
13cm = 9 cm + y ⇒ y = 13cm - 9cm = 4 cm
Logo, y = 4 cm.
A altura do triângulo é:
⇒
Assim, h = 6 cm.
Os catetos n e p medem:
⇒ cm
⇒
Aprenda mais em:
https://brainly.com.br/tarefa/7382433