Matemática, perguntado por sylviawyz, 10 meses atrás

Determine as medidas dos catetos no triângulo retângulo a seguir:

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
6

Explicação passo-a-passo:

1)

\sf sen~30^{\circ}=\dfrac{cateto~oposto}{hipotenusa}

\sf \dfrac{1}{2}=\dfrac{x}{100}

\sf 2x=100\cdot1

\sf 2x=100

\sf x=\dfrac{100}{2}

\sf \red{x=50~cm}

\sf cos~30^{\circ}=\dfrac{cateto~adjacente}{hipotenusa}

\sf \dfrac{\sqrt{3}}{2}=\dfrac{y}{100}

\sf 2y=100\sqrt{3}

\sf y=\dfrac{100\sqrt{3}}{2}

\sf \red{y=50\sqrt{3}~cm}

2)

\sf tg~30^{\circ}=\dfrac{cateto~oposto}{cateto~adjacente}

\sf \dfrac{\sqrt{3}}{3}=\dfrac{x}{25}

\sf 3x=25\sqrt{3}

\sf \red{x=\dfrac{25\sqrt{3}}{3}~cm}

\sf cos~30^{\circ}=\dfrac{cateto~adjacente}{hipotenusa}

\sf \dfrac{\sqrt{3}}{2}=\dfrac{25}{y}

\sf y\sqrt{3}=25\cdot2

\sf y\sqrt{3}=50

\sf y=\dfrac{50}{\sqrt{3}}

\sf y=\dfrac{50}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{\sqrt{3}}

\sf \red{y=\dfrac{50\sqrt{3}}{3}~cm}

3)

\sf sen~30^{\circ}=\dfrac{cateto~oposto}{hipotenusa}

\sf \dfrac{1}{2}=\dfrac{x}{8}

\sf 2x=8\cdot1

\sf 2x=8

\sf x=\dfrac{8}{2}

\sf \red{x=4}

4)

\sf tg~42^{\circ}=\dfrac{cateto~oposto}{cateto~adjacente}

\sf 0,9=\dfrac{64}{d}

\sf 0,9d=64

\sf d=\dfrac{64}{0,9}

\sf d=\dfrac{640}{9}

\sf \red{d=71,11~m}

5)

\sf sen~30^{\circ}=\dfrac{cateto~oposto}{hipotenusa}

\sf \dfrac{1}{2}=\dfrac{h}{5000}

\sf 2h=5000\cdot1

\sf 2h=5000

\sf h=\dfrac{5000}{2}

\sf \red{h=2500~m}

6)

\sf sen~39^{\circ}=\dfrac{cateto~oposto}{hipotenusa}

\sf 0,63=\dfrac{h}{18}

\sf h=0,63\cdot18

\sf \red{h=11,34~m}

7)

\sf tg~30^{\circ}=\dfrac{cateto~oposto}{cateto~adjacente}

\sf \dfrac{\sqrt{3}}{3}=\dfrac{h}{60}

\sf 3h=60\sqrt{3}

\sf h=\dfrac{60\sqrt{3}}{3}

\sf \red{h=20\sqrt{3}~m}

Perguntas interessantes