Matemática, perguntado por l8neivahillysamylla, 1 ano atrás

determine as coordenadas do ponto P que pertence ao eixo Y dista 17 unidades de A (-8,13)

Soluções para a tarefa

Respondido por MATHSPHIS
1
P(0,y)

d=\sqrt{(-8-0)^2+(13-y)^2}=17\\
\\
(-8-0)^2+(13-y)^2=289\\
\\
64+169-26y+y^2-289=0\\
\\
y^2-26y-56=0

Resolvendo a equação temos

y1 = -2 e y2 = 28

Logo há dois pontos que atendem ao enunciado:  P(9,-2) e P(0,28)
Respondido por EngenhariaElétrica
0
se P pertence a y, x=0
dAP=√(-8)²+(yp-13)²=17
√64+yp²-26yp+169=17
√yp²-26yp+233=√17²
yp²-26yp+233=289
yp²-26yp-56=0
∆=(-26²)-4.1.(-56)
∆=676+224
∆=900
yp=-(-26)±√900/2
yp'=26+30/2
yp'=56/2
yp'=28
yp"=26-30/2
yp"=-4/2
yp"=-2

logo P(0,28) ou P(0,-2)
Perguntas interessantes