determine as coordenadas de um ponto p pertencente ao eixo das abscissas e equidistantes do ponto A(1,1) e B(2,-2)
Soluções para a tarefa
Respondido por
16
Se P pertence as abscissas (eixo x), temos que P= (x, 0).
Para resolver, usamos Pitágoras ( x²+y²= Dxy² ), e temos que admitir que Dap=Dbp (Distancia do ponto A ao ponto P=Distancia do ponto B ao ponto P) já que A e B são *equidistantes* do ponto P (tem a mesma distância), logo:
R: P= (x,y)= (3,0)
Para resolver, usamos Pitágoras ( x²+y²= Dxy² ), e temos que admitir que Dap=Dbp (Distancia do ponto A ao ponto P=Distancia do ponto B ao ponto P) já que A e B são *equidistantes* do ponto P (tem a mesma distância), logo:
R: P= (x,y)= (3,0)
Anexos:
Perguntas interessantes
História,
10 meses atrás
Geografia,
10 meses atrás
Matemática,
10 meses atrás
Física,
1 ano atrás
Química,
1 ano atrás