Determine as as raízes das equações utilizando a fórmula resolutiva (fórmula de Bhaskara)
a)
b)
c)
d)
Soluções para a tarefa
a) x² - 4x - 5 = 0
a = 1
b = - 4
c = - 5
∆ = b² - 4 . a . c
∆ = (-4)² - 4 . 1 . (-5)
∆ = 16 + 20
∆ = 36
x = - b ± √∆
------------
2a
x' = - (-4) - 6
-------------
2 . 1
x' = 4 - 6
-------
2
x' = - 2
---
2
x' = - 1
x" = - (-4) + 6
------------
2 . 1
x" = 4 + 6
-------
2
x" = 10
---
2
x" = 5
S = {-1 , 5}
b) x² + 12x + 36 = 0
a = 1
b = 12
c = 36
∆ = b² - 4 . a . c
∆ = 12² - 4 . 1 . 36
∆ = 144 - 144
∆ = 0
x = - b ± √∆
------------
2a
x = - 12 - 0
----------
2 . 1
x = - 12
---
2
x = - 6
S = {-6}
c) - t - 12 + t² = 0
a = 1
b = - 1
c = - 12
∆ = b² - 4 . a . c
∆ = (-1)² - 4 . 1 . (-12)
∆ = 1 + 48
∆ = 49
t = - b ± √∆
------------
2a
t' = - (-1) - 7
----------
2 . 1
t' = 1 - 7
-----
2
t' = - 6
----
2
t' = - 3
t" = - (-1) + 7
-----------
2 . 1
t" = 1 + 7
-------
2
t" = 8
---
2
t" = 4
S = {-3 , 4}
d) 3y² + 1 - 4y = 0
a = 3
b = - 4
c = 1
∆ = b² - 4 . a . c
∆ = (-4)² - 4 . 3 . 1
∆ = 16 - 12
∆ = 4
y = - b ± √∆
------------
2a
y' = - (-4) - 2
------------
2 . 3
y' = 4 - 2
-------
6
y' = 2 (÷2)
---
6 (÷2)
y' = 1
---
3
y" = - (-4) + 2
------------
2 . 3
y" = 4 + 2
-------
6
y" = 6
----
6
y" = 1
S = {(1/3 , 1)}