Matemática, perguntado por Airtonbardalez, 8 meses atrás

determine:
a) velocidade
b) o aumento da energia cinética do próton.

Anexos:

Soluções para a tarefa

Respondido por ReijiAkaba
1

a)

v^2 = v_ {0}^{2}  + 2a\Delta s \\  \\ v^2 =  {(2,4 \cdot {10}^{7} )}^{2}  + 2\cdot3,6\cdot {10}^{15} \cdot0,035 \\  \\  {v}^{2}  = 5,76\cdot {10}^{14}  + 2,52\cdot {10}^{14}  \\  \\  {v}^{2}  = 8,28\cdot {10}^{14}  \\  \\ v = 2,9\cdot {10}^{7} m/s

b)

\Delta E_c =  \frac{m( {v}^{2}  - v_ {0}^{2} )}{2}  \\  \\ \Delta E_c =  \frac{1,67 \cdot {10}^{ - 27}( ({2,9\cdot {10}^{7}) }^{2} -  {(2,4\cdot {10}^{7} )}^{2}  }{2}  \\  \\ \Delta E_c  = 2,1 \cdot {10}^{ - 13} J

Respondido por Usuário anônimo
0

Explicação passo-a-passo:

a)

Pela equação de Torricelli:

\sf v^2=(v_0)^2+2\cdot a\cdot\Delta S

Temos:

\sf v_0=2,4\cdot10^{7}~m/s

\sf a=3,6\cdot10^{15}~m/s^2

\sf \Delta S=3,5~cm=3,5\cdot10^{-2}~m

Assim:

\sf v^2=(v_0)^2+2\cdot a\cdot\Delta S

\sf v^2=(2,4\cdot10^7)^2+2\cdot3,6\cdot10^{15}\cdot3,5\cdot10^{-2}

\sf v^2=5,76\cdot10^{14}+25,2\cdot10^{13}

\sf v^2=5,76\cdot10^{14}+2,52\cdot10^{14}

\sf v^2=(5,76+2,52)\cdot10^{14}

\sf v^2=8,28\cdot10^{14}

\sf v=\sqrt{8,28\cdot10^{14}}

\sf \red{v=2,877\cdot10^7~m/s}

b)

=> Energia cinética inicial

\sf E_{c_{1}}=\dfrac{m\cdot(v_0)^2}{2}

\sf E_{c_{1}}=\dfrac{1,67\cdot10^{-27}\cdot(2,4\cdot10^7)^2}{2}

\sf E_{c_{1}}=\dfrac{1,67\cdot10^{-27}\cdot5,76\cdot10^{14}}{2}

\sf E_{c_{1}}=\dfrac{9,6192\cdot10^{-13}}{2}

\sf E_{c_{1}}=4,8096\cdot10^{-13}~J

=> Energia cinética final

\sf E_{c_{2}}=\dfrac{m\cdot v^2}{2}

\sf E_{c_{2}}=\dfrac{1,67\cdot10^{-27}\cdot(2,877\cdot10^7)^2}{2}

\sf E_{c_{2}}=\dfrac{1,67\cdot10^{-27}\cdot8,277129\cdot10^{14}}{2}

\sf E_{c_{2}}=\dfrac{13,8228\cdot10^{-13}}{2}

\sf E_{c_{2}}=6,9114\cdot10^{-13}~J

O aumento da energia cinética do próton foi:

\sf ~6,9114\cdot10^{-13}-4,8096\cdot10^{-13}=\red{2,1018\cdot10^{-13}~J}

Perguntas interessantes