determine a transformada de Laplace inversa de f (s)= 1/(s-1)(s+3)(s+5)
Soluções para a tarefa
Respondido por
7
Vamos fazer uma quebra em frações parciais:
![F(s)=\dfrac{1}{(s-1)(s+3)(s+5)}\\\\
F(s)=\dfrac{A}{s-1}+\dfrac{B}{s+3}+\dfrac{C}{s+5}\\\\
F(s)=\dfrac{A(s+3)(s+5)+B(s-1)(s+5)+C(s-1)(s+3)}{(s-1)(s+3)(s+5)}\\\\
F(s)=\dfrac{A(s^2+8s+15)+B(s^2+4s-5)+C(s^2+2s-3)}{(s-1)(s+3)(s+5)}\\\\
F(s)=\dfrac{(A+B+C)s^2+(8A+4B+2C)s+(15A-5B-3C)}{(s-1)(s+3)(s+5)} F(s)=\dfrac{1}{(s-1)(s+3)(s+5)}\\\\
F(s)=\dfrac{A}{s-1}+\dfrac{B}{s+3}+\dfrac{C}{s+5}\\\\
F(s)=\dfrac{A(s+3)(s+5)+B(s-1)(s+5)+C(s-1)(s+3)}{(s-1)(s+3)(s+5)}\\\\
F(s)=\dfrac{A(s^2+8s+15)+B(s^2+4s-5)+C(s^2+2s-3)}{(s-1)(s+3)(s+5)}\\\\
F(s)=\dfrac{(A+B+C)s^2+(8A+4B+2C)s+(15A-5B-3C)}{(s-1)(s+3)(s+5)}](https://tex.z-dn.net/?f=F%28s%29%3D%5Cdfrac%7B1%7D%7B%28s-1%29%28s%2B3%29%28s%2B5%29%7D%5C%5C%5C%5C%0AF%28s%29%3D%5Cdfrac%7BA%7D%7Bs-1%7D%2B%5Cdfrac%7BB%7D%7Bs%2B3%7D%2B%5Cdfrac%7BC%7D%7Bs%2B5%7D%5C%5C%5C%5C%0AF%28s%29%3D%5Cdfrac%7BA%28s%2B3%29%28s%2B5%29%2BB%28s-1%29%28s%2B5%29%2BC%28s-1%29%28s%2B3%29%7D%7B%28s-1%29%28s%2B3%29%28s%2B5%29%7D%5C%5C%5C%5C%0AF%28s%29%3D%5Cdfrac%7BA%28s%5E2%2B8s%2B15%29%2BB%28s%5E2%2B4s-5%29%2BC%28s%5E2%2B2s-3%29%7D%7B%28s-1%29%28s%2B3%29%28s%2B5%29%7D%5C%5C%5C%5C%0AF%28s%29%3D%5Cdfrac%7B%28A%2BB%2BC%29s%5E2%2B%288A%2B4B%2B2C%29s%2B%2815A-5B-3C%29%7D%7B%28s-1%29%28s%2B3%29%28s%2B5%29%7D)
![\Longrightarrow \begin{cases}A+B+C=0\to C=-A-B~~~(i)\\ 8A+4B+2C=0\to 4A+2B+C=0~~~(ii)\\ 15A-5B-3C=1~~~(iii)\end{cases}\\\\\\
(i)\to(ii):\\\\
4A+2B+(-A-B)=0\to 3A+B=0\to \begin{matrix}B=-3A\\C=2A\end{matrix}~~~(iv)\\\\\\
(iv)\to (iii):\\\\
15A-5\cdot(-3A)-3\cdot (2A)=1\\\\
15A+15A-6A=1\\\\ 24A=1\to \boxed{A=1/24}~~~\boxed{B=-1/8}~~~\boxed{C=1/12}
\Longrightarrow \begin{cases}A+B+C=0\to C=-A-B~~~(i)\\ 8A+4B+2C=0\to 4A+2B+C=0~~~(ii)\\ 15A-5B-3C=1~~~(iii)\end{cases}\\\\\\
(i)\to(ii):\\\\
4A+2B+(-A-B)=0\to 3A+B=0\to \begin{matrix}B=-3A\\C=2A\end{matrix}~~~(iv)\\\\\\
(iv)\to (iii):\\\\
15A-5\cdot(-3A)-3\cdot (2A)=1\\\\
15A+15A-6A=1\\\\ 24A=1\to \boxed{A=1/24}~~~\boxed{B=-1/8}~~~\boxed{C=1/12}](https://tex.z-dn.net/?f=%5CLongrightarrow+%5Cbegin%7Bcases%7DA%2BB%2BC%3D0%5Cto+C%3D-A-B%7E%7E%7E%28i%29%5C%5C+8A%2B4B%2B2C%3D0%5Cto+4A%2B2B%2BC%3D0%7E%7E%7E%28ii%29%5C%5C+15A-5B-3C%3D1%7E%7E%7E%28iii%29%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%0A%28i%29%5Cto%28ii%29%3A%5C%5C%5C%5C%0A4A%2B2B%2B%28-A-B%29%3D0%5Cto+3A%2BB%3D0%5Cto+%5Cbegin%7Bmatrix%7DB%3D-3A%5C%5CC%3D2A%5Cend%7Bmatrix%7D%7E%7E%7E%28iv%29%5C%5C%5C%5C%5C%5C%0A%28iv%29%5Cto+%28iii%29%3A%5C%5C%5C%5C%0A15A-5%5Ccdot%28-3A%29-3%5Ccdot+%282A%29%3D1%5C%5C%5C%5C%0A15A%2B15A-6A%3D1%5C%5C%5C%5C+24A%3D1%5Cto+%5Cboxed%7BA%3D1%2F24%7D%7E%7E%7E%5Cboxed%7BB%3D-1%2F8%7D%7E%7E%7E%5Cboxed%7BC%3D1%2F12%7D%0A)
Voltando à expressão original, temos:
![F(s)=\dfrac{(1/24)}{s-1}+\dfrac{(-1/8)}{s+3}+\dfrac{(1/12)}{s+5}\\\\
F(s)=\dfrac{1}{24}\cdot\dfrac{1}{s-1}-\dfrac{1}{8}\cdot\dfrac{1}{s+3}+\dfrac{1}{12}\cdot\dfrac{1}{s+5} F(s)=\dfrac{(1/24)}{s-1}+\dfrac{(-1/8)}{s+3}+\dfrac{(1/12)}{s+5}\\\\
F(s)=\dfrac{1}{24}\cdot\dfrac{1}{s-1}-\dfrac{1}{8}\cdot\dfrac{1}{s+3}+\dfrac{1}{12}\cdot\dfrac{1}{s+5}](https://tex.z-dn.net/?f=F%28s%29%3D%5Cdfrac%7B%281%2F24%29%7D%7Bs-1%7D%2B%5Cdfrac%7B%28-1%2F8%29%7D%7Bs%2B3%7D%2B%5Cdfrac%7B%281%2F12%29%7D%7Bs%2B5%7D%5C%5C%5C%5C%0AF%28s%29%3D%5Cdfrac%7B1%7D%7B24%7D%5Ccdot%5Cdfrac%7B1%7D%7Bs-1%7D-%5Cdfrac%7B1%7D%7B8%7D%5Ccdot%5Cdfrac%7B1%7D%7Bs%2B3%7D%2B%5Cdfrac%7B1%7D%7B12%7D%5Ccdot%5Cdfrac%7B1%7D%7Bs%2B5%7D)
Aplicando a Inversa da Transformada de Laplace:
![\mathcal{L}^{-1}\{F(s)\}=\mathcal{L}^{-1}\left\{\dfrac{1}{24}\cdot\dfrac{1}{s-1}-\dfrac{1}{8}\cdot\dfrac{1}{s+3}+\dfrac{1}{12}\cdot\dfrac{1}{s+5}\right\}\\\\
\mathcal{L}\{F(s)\}=\mathcal{L}^{-1}\left\{\dfrac{1}{24}\cdot\dfrac{1}{s-1}\right\}-\mathcal{L}^{-1}\left\{\dfrac{1}{8}\cdot\dfrac{1}{s+3}\right\}+\mathcal{L}^{-1}\left\{\dfrac{1}{12}\cdot\dfrac{1}{s+5}\right\} \mathcal{L}^{-1}\{F(s)\}=\mathcal{L}^{-1}\left\{\dfrac{1}{24}\cdot\dfrac{1}{s-1}-\dfrac{1}{8}\cdot\dfrac{1}{s+3}+\dfrac{1}{12}\cdot\dfrac{1}{s+5}\right\}\\\\
\mathcal{L}\{F(s)\}=\mathcal{L}^{-1}\left\{\dfrac{1}{24}\cdot\dfrac{1}{s-1}\right\}-\mathcal{L}^{-1}\left\{\dfrac{1}{8}\cdot\dfrac{1}{s+3}\right\}+\mathcal{L}^{-1}\left\{\dfrac{1}{12}\cdot\dfrac{1}{s+5}\right\}](https://tex.z-dn.net/?f=%5Cmathcal%7BL%7D%5E%7B-1%7D%5C%7BF%28s%29%5C%7D%3D%5Cmathcal%7BL%7D%5E%7B-1%7D%5Cleft%5C%7B%5Cdfrac%7B1%7D%7B24%7D%5Ccdot%5Cdfrac%7B1%7D%7Bs-1%7D-%5Cdfrac%7B1%7D%7B8%7D%5Ccdot%5Cdfrac%7B1%7D%7Bs%2B3%7D%2B%5Cdfrac%7B1%7D%7B12%7D%5Ccdot%5Cdfrac%7B1%7D%7Bs%2B5%7D%5Cright%5C%7D%5C%5C%5C%5C%0A%5Cmathcal%7BL%7D%5C%7BF%28s%29%5C%7D%3D%5Cmathcal%7BL%7D%5E%7B-1%7D%5Cleft%5C%7B%5Cdfrac%7B1%7D%7B24%7D%5Ccdot%5Cdfrac%7B1%7D%7Bs-1%7D%5Cright%5C%7D-%5Cmathcal%7BL%7D%5E%7B-1%7D%5Cleft%5C%7B%5Cdfrac%7B1%7D%7B8%7D%5Ccdot%5Cdfrac%7B1%7D%7Bs%2B3%7D%5Cright%5C%7D%2B%5Cmathcal%7BL%7D%5E%7B-1%7D%5Cleft%5C%7B%5Cdfrac%7B1%7D%7B12%7D%5Ccdot%5Cdfrac%7B1%7D%7Bs%2B5%7D%5Cright%5C%7D)
![\mathcal{L}^{-1}\{F(s)\}=\dfrac{1}{24}\cdot\mathcal{L}^{-1}\left\{\dfrac{1}{s-1}\right\}-\dfrac{1}{8}\cdot\mathcal{L}^{-1}\left\{\dfrac{1}{s+3}\right\}<br />+\dfrac{1}{12}\cdot\mathcal{L}^{-1}\left\{\dfrac{1}{s+5}\right\}\\\\
\mathcal{L}^{-1}\{F(s)\}=\dfrac{e^{-(-1)t}}{24}\cdot\mathcal{L}^{-1}\left\{\dfrac{1}{s}\right\}-\dfrac{e^{-3t}}{8}\cdot\mathcal{L}^{-1}\left\{\dfrac{1}{s}\right\}+\dfrac{e^{-5t}}{12}\cdot\mathcal{L}^{-1}\left\{\dfrac{1}{s}\right\} \mathcal{L}^{-1}\{F(s)\}=\dfrac{1}{24}\cdot\mathcal{L}^{-1}\left\{\dfrac{1}{s-1}\right\}-\dfrac{1}{8}\cdot\mathcal{L}^{-1}\left\{\dfrac{1}{s+3}\right\}<br />+\dfrac{1}{12}\cdot\mathcal{L}^{-1}\left\{\dfrac{1}{s+5}\right\}\\\\
\mathcal{L}^{-1}\{F(s)\}=\dfrac{e^{-(-1)t}}{24}\cdot\mathcal{L}^{-1}\left\{\dfrac{1}{s}\right\}-\dfrac{e^{-3t}}{8}\cdot\mathcal{L}^{-1}\left\{\dfrac{1}{s}\right\}+\dfrac{e^{-5t}}{12}\cdot\mathcal{L}^{-1}\left\{\dfrac{1}{s}\right\}](https://tex.z-dn.net/?f=%5Cmathcal%7BL%7D%5E%7B-1%7D%5C%7BF%28s%29%5C%7D%3D%5Cdfrac%7B1%7D%7B24%7D%5Ccdot%5Cmathcal%7BL%7D%5E%7B-1%7D%5Cleft%5C%7B%5Cdfrac%7B1%7D%7Bs-1%7D%5Cright%5C%7D-%5Cdfrac%7B1%7D%7B8%7D%5Ccdot%5Cmathcal%7BL%7D%5E%7B-1%7D%5Cleft%5C%7B%5Cdfrac%7B1%7D%7Bs%2B3%7D%5Cright%5C%7D%3Cbr+%2F%3E%2B%5Cdfrac%7B1%7D%7B12%7D%5Ccdot%5Cmathcal%7BL%7D%5E%7B-1%7D%5Cleft%5C%7B%5Cdfrac%7B1%7D%7Bs%2B5%7D%5Cright%5C%7D%5C%5C%5C%5C%0A%5Cmathcal%7BL%7D%5E%7B-1%7D%5C%7BF%28s%29%5C%7D%3D%5Cdfrac%7Be%5E%7B-%28-1%29t%7D%7D%7B24%7D%5Ccdot%5Cmathcal%7BL%7D%5E%7B-1%7D%5Cleft%5C%7B%5Cdfrac%7B1%7D%7Bs%7D%5Cright%5C%7D-%5Cdfrac%7Be%5E%7B-3t%7D%7D%7B8%7D%5Ccdot%5Cmathcal%7BL%7D%5E%7B-1%7D%5Cleft%5C%7B%5Cdfrac%7B1%7D%7Bs%7D%5Cright%5C%7D%2B%5Cdfrac%7Be%5E%7B-5t%7D%7D%7B12%7D%5Ccdot%5Cmathcal%7BL%7D%5E%7B-1%7D%5Cleft%5C%7B%5Cdfrac%7B1%7D%7Bs%7D%5Cright%5C%7D)
![\mathcal{L}^{-1}\{F(s)\}=\dfrac{e^{t}}{24}\cdot1-\dfrac{e^{-3t}}{8}\cdot1+\dfrac{e^{-5t}}{12}\cdot1\\\\ \boxed{\mathcal{L}^{-1}\{F(s)\}=\dfrac{e^{t}}{24}-\dfrac{e^{-3t}}{8}+\dfrac{e^{-5t}}{12}} \mathcal{L}^{-1}\{F(s)\}=\dfrac{e^{t}}{24}\cdot1-\dfrac{e^{-3t}}{8}\cdot1+\dfrac{e^{-5t}}{12}\cdot1\\\\ \boxed{\mathcal{L}^{-1}\{F(s)\}=\dfrac{e^{t}}{24}-\dfrac{e^{-3t}}{8}+\dfrac{e^{-5t}}{12}}](https://tex.z-dn.net/?f=%5Cmathcal%7BL%7D%5E%7B-1%7D%5C%7BF%28s%29%5C%7D%3D%5Cdfrac%7Be%5E%7Bt%7D%7D%7B24%7D%5Ccdot1-%5Cdfrac%7Be%5E%7B-3t%7D%7D%7B8%7D%5Ccdot1%2B%5Cdfrac%7Be%5E%7B-5t%7D%7D%7B12%7D%5Ccdot1%5C%5C%5C%5C+%5Cboxed%7B%5Cmathcal%7BL%7D%5E%7B-1%7D%5C%7BF%28s%29%5C%7D%3D%5Cdfrac%7Be%5E%7Bt%7D%7D%7B24%7D-%5Cdfrac%7Be%5E%7B-3t%7D%7D%7B8%7D%2B%5Cdfrac%7Be%5E%7B-5t%7D%7D%7B12%7D%7D)
Voltando à expressão original, temos:
Aplicando a Inversa da Transformada de Laplace:
Perguntas interessantes
Matemática,
11 meses atrás
História,
11 meses atrás
História,
11 meses atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás