Determine a soma dos n primeiros termos da P.A (1,6,11, ...,496)
Soluções para a tarefa
Respondido por
0
resolução!
r = a2 - a1
r = 6 - 1
r = 5
________________________________________
an = a1 + ( n - 1 ) r
496 = 1 + ( n - 1 ) 5
496 = 1 + 5n - 5
496 = - 4 + 5n
496 + 4 = 5n
500 = 5n
n = 500 / 5
n = 100
________________________________________
Sn = ( a1 + an ) n / 2
Sn = ( 1 + 496 ) 100 / 2
Sn = 497 * 100 / 2
Sn = 49.700 / 2
Sn = 24.850
espero ter ajudado
r = a2 - a1
r = 6 - 1
r = 5
________________________________________
an = a1 + ( n - 1 ) r
496 = 1 + ( n - 1 ) 5
496 = 1 + 5n - 5
496 = - 4 + 5n
496 + 4 = 5n
500 = 5n
n = 500 / 5
n = 100
________________________________________
Sn = ( a1 + an ) n / 2
Sn = ( 1 + 496 ) 100 / 2
Sn = 497 * 100 / 2
Sn = 49.700 / 2
Sn = 24.850
espero ter ajudado
Respondido por
0
1ª parte - achando a razão da progressão
Vamos achar a razão! Para isso, subtraia qualquer termo pelo seu antecessor.
A razão vale 5.
2ª parte - achando o valor de n
Temos que achar qual o valor de n do termo 496. Para isso, tem uma fórmula:
Substituindo na fórmula:
Multiplicar.
Passar os números do outro lado.
Subtrair e somar.
Passar o 5 dividindo.
Dividir.
Agora que achamos n, temos todas as informações necessárias para calcular essa soma.
Assim,
3ª parte - calculando a soma da PA
Para isso, há uma fórmula:
Substituindo na fórmula:
Somar.
Multiplicar.
Dividir.
A soma dá 24.850.
:-)
Perguntas interessantes
Sociologia,
9 meses atrás
Física,
9 meses atrás
Artes,
1 ano atrás
Física,
1 ano atrás
Português,
1 ano atrás
História,
1 ano atrás
Administração,
1 ano atrás