determine a soma dos dez primeiros termos de uma p.g. em que o decimo termo é igual a 1 e a razão é igual a -1
Soluções para a tarefa
Respondido por
51
1° você precisa descobrir o valor de ![a_{1} =? a_{1} =?](https://tex.z-dn.net/?f=+a_%7B1%7D+%3D%3F)
![a_{n} = a_{1} * q^{n-1} \\\\\\ 1 = a_{1} * (-1)^{10-1}\\\\\\ 1 = a_{1} * (-1)^{9}\\\\ 1 = a_{1} * -1\\\\ 1+1=1 = a_{1} * \\\\ a_{1}=2 a_{n} = a_{1} * q^{n-1} \\\\\\ 1 = a_{1} * (-1)^{10-1}\\\\\\ 1 = a_{1} * (-1)^{9}\\\\ 1 = a_{1} * -1\\\\ 1+1=1 = a_{1} * \\\\ a_{1}=2](https://tex.z-dn.net/?f=a_%7Bn%7D+%3D+a_%7B1%7D+%2A+q%5E%7Bn-1%7D+%5C%5C%5C%5C%5C%5C+1+%3D+a_%7B1%7D+%2A+%28-1%29%5E%7B10-1%7D%5C%5C%5C%5C%5C%5C+1+%3D+a_%7B1%7D+%2A+%28-1%29%5E%7B9%7D%5C%5C%5C%5C+1+%3D+a_%7B1%7D+%2A+-1%5C%5C%5C%5C+1%2B1%3D1+%3D+a_%7B1%7D+%2A+%5C%5C%5C%5C++a_%7B1%7D%3D2)
![S _{n} = S_{10}= ?\\ a _{1} = 2\\ n=10\\ q=-1\\\\\\ S _{n} = \frac{ a_{1} ( q^{n}-1 )}{q-1} \\\\\\ S _{10} = \frac{ 2 ( (-1)^{10}-1 )}{-1-1} \\\\ S _{10} = \frac{ 2 ( 1-1 )}{-2} \\\\ S _{10} = \frac{ 2 }{-2} \\\\ S _{10} = -1 S _{n} = S_{10}= ?\\ a _{1} = 2\\ n=10\\ q=-1\\\\\\ S _{n} = \frac{ a_{1} ( q^{n}-1 )}{q-1} \\\\\\ S _{10} = \frac{ 2 ( (-1)^{10}-1 )}{-1-1} \\\\ S _{10} = \frac{ 2 ( 1-1 )}{-2} \\\\ S _{10} = \frac{ 2 }{-2} \\\\ S _{10} = -1](https://tex.z-dn.net/?f=S+_%7Bn%7D+%3D+S_%7B10%7D%3D+%3F%5C%5C+a+_%7B1%7D+%3D+2%5C%5C+n%3D10%5C%5C+q%3D-1%5C%5C%5C%5C%5C%5C+S+_%7Bn%7D+%3D+%5Cfrac%7B+a_%7B1%7D+%28+q%5E%7Bn%7D-1+%29%7D%7Bq-1%7D+%5C%5C%5C%5C%5C%5C++S+_%7B10%7D+%3D+%5Cfrac%7B+2+%28+%28-1%29%5E%7B10%7D-1+%29%7D%7B-1-1%7D+%5C%5C%5C%5C+S+_%7B10%7D+%3D+%5Cfrac%7B+2+%28+1-1+%29%7D%7B-2%7D+%5C%5C%5C%5C+S+_%7B10%7D+%3D+%5Cfrac%7B+2+%7D%7B-2%7D+%5C%5C%5C%5C+S+_%7B10%7D+%3D+-1)
LuanaSC8:
É isso aí mesmo...
Perguntas interessantes
Português,
1 ano atrás
Ed. Física,
1 ano atrás
Ed. Física,
1 ano atrás
Matemática,
1 ano atrás
Química,
1 ano atrás
Física,
1 ano atrás