Matemática, perguntado por emilizinha12, 1 ano atrás

determine a soma dos 40 primeiros termos da PA (-15,-11,-7,...)

Soluções para a tarefa

Respondido por Hazyell
5
Primeiro precisamos encontrar a razão dessa PA, para isso vamos usar a formula geral da PA

an = a1 + (n-1)*r

a1 = -15; a2 = -11; a3 = -7....

Usando o a2 temos:

-11 = -15 + (2-1)*r
-11+15 = r
r = +4

Agora vamos encontrar o 40º termo dessa PA
a40 = -15 + (40-1)*4
a40 = -15 + 39*4
a40 = +141

Para calcular a soma de termos de uma PA usamos a seguinte formula:
Sn =  \frac{(a1+a40)}{2} *r

Substituindo os valores:

S40 =  \frac{(-15+141)}{2} *4 = 252

Respondido por ewerton197775p7gwlb
2

resolução!

r = a2 - a1

r = - 11 - (-15)

r = 4

a40 = a1 + 39r

a40 = - 15 + 39 * 4

a40 = - 15 + 156

a40 = 141

Sn = ( a1 + an ) n / 2

Sn = ( - 15 + 141 ) 40 / 2

Sn = 126 * 20

Sn = 2520

Perguntas interessantes