Determine a solução de cada um dos seguintes sistemas de equações do 1o grau nas
incógnitas x e y, pelo método que achar melhor adição ou subtração:
a) x + y = 42 b) 4x + 2y = - 7
x – y = 8. 2x – 4y = - 0,5
Soluções para a tarefa
Resposta:
Resolver um sistema de equações com duas variáveis consiste em utilizar técnicas matemáticas na determinação das incógnitas x e y. Os métodos utilizados pelos matemáticos na resolução consistem em: resolução gráfica, substituição, adição e comparação. Vamos fixar nosso estudo no método da comparação, que consiste em isolar a mesma incógnita nas duas equações, realizando a comparação entre elas. Observe a resolução dos modelos a seguir:
Exemplo 1
Isolando x na 1ª equação
x + y = 7
x = 7 – y
Isolando x na 2ª equação
x – 2y = – 5
x = – 5 + 2y
Realizando a comparação
x = x
7 – y = – 5 + 2y
– y – 2y = –5 –7
– 3y = – 12 *(–1)
3y = 12
y = 12/3
y = 4
Para calcularmos o valor de x utilizamos qualquer uma das equações substituindo y por 4.
x = – 5 +2y
x = – 5 + 2 * 4
x = – 5 + 8
x = 3
Solução do sistema: (3; 4)