Determine a solução de cada EDO, utilizando o método da separação de variáveis e sua solução particular: a) y' = 3x²y / y(0)=1 b) y' = -4xy² / y(0) = 4 c) y'-2x = 0 / y(2) = d) x.dy-y².dx = 0 / y(1) = 3 e) x.dy - y².dx = 0 / y(0) = 6 f) dy/dx = x^2y^4 / y(0) = 10 PASSO A PASSO POR FAVOR.
Soluções para a tarefa
Respondido por
3
Olá,
Equações Diferenciais Ordinárias por Variáveis Separáveis.
A)
![\displaystyle \mathsf{y'=3x^2y\qquad\qquad\qquad y(0)=1}\\\\\\\\\mathsf{ \frac{dy}{dx}=3x^2y }\\\\\\\mathsf{ \frac{dy}{y}=3x^2dx }\\\\\\\text{Integra dos dois lados}\\\\\\\mathsf{ \int \frac{dy}{y}=\int 3x^2dx }\\\\\\\mathsf{\ell n |y|= \frac{\diagup\!\!\!\!3x^3 }{\diagup\!\!\!\!3} +C }\\\\\\\mathsf{\ell n |y|= x^3 +C } \displaystyle \mathsf{y'=3x^2y\qquad\qquad\qquad y(0)=1}\\\\\\\\\mathsf{ \frac{dy}{dx}=3x^2y }\\\\\\\mathsf{ \frac{dy}{y}=3x^2dx }\\\\\\\text{Integra dos dois lados}\\\\\\\mathsf{ \int \frac{dy}{y}=\int 3x^2dx }\\\\\\\mathsf{\ell n |y|= \frac{\diagup\!\!\!\!3x^3 }{\diagup\!\!\!\!3} +C }\\\\\\\mathsf{\ell n |y|= x^3 +C }](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7By%27%3D3x%5E2y%5Cqquad%5Cqquad%5Cqquad+y%280%29%3D1%7D%5C%5C%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Cfrac%7Bdy%7D%7Bdx%7D%3D3x%5E2y+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Cfrac%7Bdy%7D%7By%7D%3D3x%5E2dx+%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BIntegra+dos+dois+lados%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Cint+%5Cfrac%7Bdy%7D%7By%7D%3D%5Cint+3x%5E2dx+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%5Cell+n+%7Cy%7C%3D+%5Cfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%213x%5E3+%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%213%7D+%2BC+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%5Cell+n+%7Cy%7C%3D+x%5E3+%2BC+%7D)
y(0) = 1
x = 0 e y = 1
![\displaystyle \mathsf{\underbrace{\ell n |1|}_{=0}= 0^3 +C }\\\\\\\mathsf{C=0}\\\\\\\\\mathsf{\ell n |y|= x^3}\\\\\\\\\text{Deixando o 'y' de forma explicita}\\\\\\\text{Aplica exponencia nos dois lados, para eliminar o }\ell n\\\\\\\mathsf{e^{\ell n |y|}=e^{x^3}}\\\\\\\boxed{\mathsf{y=e^{x^3}}} \displaystyle \mathsf{\underbrace{\ell n |1|}_{=0}= 0^3 +C }\\\\\\\mathsf{C=0}\\\\\\\\\mathsf{\ell n |y|= x^3}\\\\\\\\\text{Deixando o 'y' de forma explicita}\\\\\\\text{Aplica exponencia nos dois lados, para eliminar o }\ell n\\\\\\\mathsf{e^{\ell n |y|}=e^{x^3}}\\\\\\\boxed{\mathsf{y=e^{x^3}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7B%5Cunderbrace%7B%5Cell+n+%7C1%7C%7D_%7B%3D0%7D%3D+0%5E3+%2BC+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7BC%3D0%7D%5C%5C%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%5Cell+n+%7Cy%7C%3D+x%5E3%7D%5C%5C%5C%5C%5C%5C%5C%5C%5Ctext%7BDeixando+o+%27y%27+de+forma+explicita%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BAplica+exponencia+nos+dois+lados%2C+para+eliminar+o+%7D%5Cell+n%5C%5C%5C%5C%5C%5C%5Cmathsf%7Be%5E%7B%5Cell+n+%7Cy%7C%7D%3De%5E%7Bx%5E3%7D%7D%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cmathsf%7By%3De%5E%7Bx%5E3%7D%7D%7D)
B)
![\displaystyle \mathsf{y'=-4xy^2\qquad\qquad\qquad y(0)=4}\\\\\\\mathsf{ \frac{dy}{dx}=-4xy^2 }\\\\\\\mathsf{ \int \frac{dy}{y^2}=\int -4xdx }\\\\\\\mathsf{- \frac{1}{y}=-2x^2+C } \displaystyle \mathsf{y'=-4xy^2\qquad\qquad\qquad y(0)=4}\\\\\\\mathsf{ \frac{dy}{dx}=-4xy^2 }\\\\\\\mathsf{ \int \frac{dy}{y^2}=\int -4xdx }\\\\\\\mathsf{- \frac{1}{y}=-2x^2+C }](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7By%27%3D-4xy%5E2%5Cqquad%5Cqquad%5Cqquad+y%280%29%3D4%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Cfrac%7Bdy%7D%7Bdx%7D%3D-4xy%5E2+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Cint+%5Cfrac%7Bdy%7D%7By%5E2%7D%3D%5Cint+-4xdx+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B-+%5Cfrac%7B1%7D%7By%7D%3D-2x%5E2%2BC+%7D)
y(0) = 4
x = 0 e y = 4
![\displaystyle\mathsf{- \frac{1}{4}=-2(0)^2+C }\\\\\\\mathsf{C=- \frac{1}{4} }\\\\\\\mathsf{- \frac{1}{y}=-2x^2- \frac{1}{4} }\\\\\\\mathsf{-1=\left(-2x^2- \frac{1}{4} \right)y}\\\\\\\mathsf{y= \frac{-1}{-2x^2- \frac{1}{4}} }\\\\\\\mathsf{y= \frac{-1}{- \frac{8x^2-1}{4} } }\\\\\\\boxed{\mathsf{y= \frac{4}{-8x^2-1} }} \displaystyle\mathsf{- \frac{1}{4}=-2(0)^2+C }\\\\\\\mathsf{C=- \frac{1}{4} }\\\\\\\mathsf{- \frac{1}{y}=-2x^2- \frac{1}{4} }\\\\\\\mathsf{-1=\left(-2x^2- \frac{1}{4} \right)y}\\\\\\\mathsf{y= \frac{-1}{-2x^2- \frac{1}{4}} }\\\\\\\mathsf{y= \frac{-1}{- \frac{8x^2-1}{4} } }\\\\\\\boxed{\mathsf{y= \frac{4}{-8x^2-1} }}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cmathsf%7B-+%5Cfrac%7B1%7D%7B4%7D%3D-2%280%29%5E2%2BC+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7BC%3D-+%5Cfrac%7B1%7D%7B4%7D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B-+%5Cfrac%7B1%7D%7By%7D%3D-2x%5E2-+%5Cfrac%7B1%7D%7B4%7D++%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B-1%3D%5Cleft%28-2x%5E2-+%5Cfrac%7B1%7D%7B4%7D+%5Cright%29y%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7By%3D+%5Cfrac%7B-1%7D%7B-2x%5E2-+%5Cfrac%7B1%7D%7B4%7D%7D++%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7By%3D+%5Cfrac%7B-1%7D%7B-+%5Cfrac%7B8x%5E2-1%7D%7B4%7D+%7D+%7D%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cmathsf%7By%3D+%5Cfrac%7B4%7D%7B-8x%5E2-1%7D+%7D%7D)
C)
![\displaystyle \mathsf{y'-2x=0\qquad\qquad\qquad y(2)=0}\\\\\\ \mathsf{\frac{dy}{dx}=2x }\\\\\\\mathsf{\int dy=\int 2xdx}\\\\\\\mathsf{y=x^2+C}\\\\\\\text{x=2, y=0}\\\\\\\mathsf{0=2^2+C}\\\\\\\mathsf{C=-4}\\\\\\\boxed{\mathsf{y= x^2-4}} \displaystyle \mathsf{y'-2x=0\qquad\qquad\qquad y(2)=0}\\\\\\ \mathsf{\frac{dy}{dx}=2x }\\\\\\\mathsf{\int dy=\int 2xdx}\\\\\\\mathsf{y=x^2+C}\\\\\\\text{x=2, y=0}\\\\\\\mathsf{0=2^2+C}\\\\\\\mathsf{C=-4}\\\\\\\boxed{\mathsf{y= x^2-4}}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7By%27-2x%3D0%5Cqquad%5Cqquad%5Cqquad+y%282%29%3D0%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cfrac%7Bdy%7D%7Bdx%7D%3D2x+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%5Cint+dy%3D%5Cint+2xdx%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7By%3Dx%5E2%2BC%7D%5C%5C%5C%5C%5C%5C%5Ctext%7Bx%3D2%2C+y%3D0%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B0%3D2%5E2%2BC%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7BC%3D-4%7D%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cmathsf%7By%3D+x%5E2-4%7D%7D)
D)
![\displaystyle \mathsf{xdy-y^2dx=0\qquad\qquad\qquad y(1)=3}\\\\\\\mathsf{xdy=y^2dx}\\\\\\\mathsf{ \int \frac{dy}{y^2}=\int \frac{dx}{x} }\\\\\\\mathsf{- \frac{1}{y}=\ell n|x|+C }\\\\\\\text{x=1,y=3}\\\\\\\mathsf{- \frac{1}{3}= \ell n|1|+C}\\\\\\\mathsf{C=- \frac{1}{3} }\\\\\\\mathsf{- \frac{1}{y}=\ell n|x|- \frac{1}{3} }\\\\\\\mathsf{-1=\left(\ell n|x|- \frac{1}{3} \right)y}\\\\\\\mathsf{y= \frac{-1}{\ell n|x|- \frac{1}{3} } }\\\\\\\mathsf{y= \frac{-1}{ \frac{3\ell n |x|-1}{3} } } \displaystyle \mathsf{xdy-y^2dx=0\qquad\qquad\qquad y(1)=3}\\\\\\\mathsf{xdy=y^2dx}\\\\\\\mathsf{ \int \frac{dy}{y^2}=\int \frac{dx}{x} }\\\\\\\mathsf{- \frac{1}{y}=\ell n|x|+C }\\\\\\\text{x=1,y=3}\\\\\\\mathsf{- \frac{1}{3}= \ell n|1|+C}\\\\\\\mathsf{C=- \frac{1}{3} }\\\\\\\mathsf{- \frac{1}{y}=\ell n|x|- \frac{1}{3} }\\\\\\\mathsf{-1=\left(\ell n|x|- \frac{1}{3} \right)y}\\\\\\\mathsf{y= \frac{-1}{\ell n|x|- \frac{1}{3} } }\\\\\\\mathsf{y= \frac{-1}{ \frac{3\ell n |x|-1}{3} } }](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7Bxdy-y%5E2dx%3D0%5Cqquad%5Cqquad%5Cqquad+y%281%29%3D3%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bxdy%3Dy%5E2dx%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Cint+%5Cfrac%7Bdy%7D%7By%5E2%7D%3D%5Cint++%5Cfrac%7Bdx%7D%7Bx%7D++%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B-+%5Cfrac%7B1%7D%7By%7D%3D%5Cell+n%7Cx%7C%2BC+%7D%5C%5C%5C%5C%5C%5C%5Ctext%7Bx%3D1%2Cy%3D3%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B-+%5Cfrac%7B1%7D%7B3%7D%3D+%5Cell+n%7C1%7C%2BC%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7BC%3D-+%5Cfrac%7B1%7D%7B3%7D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B-+%5Cfrac%7B1%7D%7By%7D%3D%5Cell+n%7Cx%7C-+%5Cfrac%7B1%7D%7B3%7D++%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B-1%3D%5Cleft%28%5Cell+n%7Cx%7C-+%5Cfrac%7B1%7D%7B3%7D+%5Cright%29y%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7By%3D+%5Cfrac%7B-1%7D%7B%5Cell+n%7Cx%7C-+%5Cfrac%7B1%7D%7B3%7D+%7D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7By%3D+%5Cfrac%7B-1%7D%7B+%5Cfrac%7B3%5Cell+n+%7Cx%7C-1%7D%7B3%7D+%7D+%7D)
![\displaystyle \boxed{\mathsf{y= \frac{-3}{3\ell n |x|-1 } }} \displaystyle \boxed{\mathsf{y= \frac{-3}{3\ell n |x|-1 } }}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cboxed%7B%5Cmathsf%7By%3D+%5Cfrac%7B-3%7D%7B3%5Cell+n+%7Cx%7C-1+%7D+%7D%7D)
E)
Alguma coisa no valor inicial está errado.
![\displaystyle \mathsf{xdy-y^2dx=0\qquad\qquad\qquad y(0)=6}\\\\\\\mathsf{ \int \frac{dy}{y^2}=\int \frac{dx}{x} }\\\\\\\mathsf{- \frac{1}{y}=\ell n|x|+C }\\\\\\\text{x=0,y=6}\\\\\\\mathsf{\ell n (0) ~nao ~existe, ~verifique~ a~ questao} \displaystyle \mathsf{xdy-y^2dx=0\qquad\qquad\qquad y(0)=6}\\\\\\\mathsf{ \int \frac{dy}{y^2}=\int \frac{dx}{x} }\\\\\\\mathsf{- \frac{1}{y}=\ell n|x|+C }\\\\\\\text{x=0,y=6}\\\\\\\mathsf{\ell n (0) ~nao ~existe, ~verifique~ a~ questao}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7Bxdy-y%5E2dx%3D0%5Cqquad%5Cqquad%5Cqquad+y%280%29%3D6%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Cint+%5Cfrac%7Bdy%7D%7By%5E2%7D%3D%5Cint+%5Cfrac%7Bdx%7D%7Bx%7D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B-+%5Cfrac%7B1%7D%7By%7D%3D%5Cell+n%7Cx%7C%2BC+%7D%5C%5C%5C%5C%5C%5C%5Ctext%7Bx%3D0%2Cy%3D6%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%5Cell+n+%280%29+%7Enao+%7Eexiste%2C+%7Everifique%7E+a%7E+questao%7D)
F)
![\displaystyle \mathsf{ \frac{dy}{dx}=x^2y^4\qquad\qquad\qquad y( 0)=10}\\\\\\\mathsf{ \int \frac{dy}{y^4}=\int x^2dx }\\\\\\\\\mathsf{- \frac{1}{3y^3}= \frac{x^3}{3}+C }\\\\\\\text{x=0,y=10}\\\\\\\\\mathsf{- \frac{1}{3\cdot (10)^3}= \frac{0^3}{3}+C }\\\\\\\mathsf{C=- \frac{1}{3000} }\\\\\\\mathsf{- \frac{1}{3y^3}= \frac{x^3}{3} - \frac{1}{3000} }\\\\\\\mathsf{- \frac{1}{y^3}=x^3- \frac{1}{1000} }\\\\\\\mathsf{-1=\left(x^3- \frac{1}{1000} \right)y^3}\\\\\\\mathsf{y^3= \frac{-1}{x^3- \frac{1}{1000} } } \displaystyle \mathsf{ \frac{dy}{dx}=x^2y^4\qquad\qquad\qquad y( 0)=10}\\\\\\\mathsf{ \int \frac{dy}{y^4}=\int x^2dx }\\\\\\\\\mathsf{- \frac{1}{3y^3}= \frac{x^3}{3}+C }\\\\\\\text{x=0,y=10}\\\\\\\\\mathsf{- \frac{1}{3\cdot (10)^3}= \frac{0^3}{3}+C }\\\\\\\mathsf{C=- \frac{1}{3000} }\\\\\\\mathsf{- \frac{1}{3y^3}= \frac{x^3}{3} - \frac{1}{3000} }\\\\\\\mathsf{- \frac{1}{y^3}=x^3- \frac{1}{1000} }\\\\\\\mathsf{-1=\left(x^3- \frac{1}{1000} \right)y^3}\\\\\\\mathsf{y^3= \frac{-1}{x^3- \frac{1}{1000} } }](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7B+%5Cfrac%7Bdy%7D%7Bdx%7D%3Dx%5E2y%5E4%5Cqquad%5Cqquad%5Cqquad+y%28+0%29%3D10%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Cint+%5Cfrac%7Bdy%7D%7By%5E4%7D%3D%5Cint+x%5E2dx+%7D%5C%5C%5C%5C%5C%5C%5C%5C%5Cmathsf%7B-+%5Cfrac%7B1%7D%7B3y%5E3%7D%3D+%5Cfrac%7Bx%5E3%7D%7B3%7D%2BC++%7D%5C%5C%5C%5C%5C%5C%5Ctext%7Bx%3D0%2Cy%3D10%7D%5C%5C%5C%5C%5C%5C%5C%5C%5Cmathsf%7B-+%5Cfrac%7B1%7D%7B3%5Ccdot+%2810%29%5E3%7D%3D+%5Cfrac%7B0%5E3%7D%7B3%7D%2BC++%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7BC%3D-+%5Cfrac%7B1%7D%7B3000%7D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B-+%5Cfrac%7B1%7D%7B3y%5E3%7D%3D++%5Cfrac%7Bx%5E3%7D%7B3%7D+-+%5Cfrac%7B1%7D%7B3000%7D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B-+%5Cfrac%7B1%7D%7By%5E3%7D%3Dx%5E3-+%5Cfrac%7B1%7D%7B1000%7D++%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B-1%3D%5Cleft%28x%5E3-+%5Cfrac%7B1%7D%7B1000%7D+%5Cright%29y%5E3%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7By%5E3%3D+%5Cfrac%7B-1%7D%7Bx%5E3-+%5Cfrac%7B1%7D%7B1000%7D+%7D+%7D)
![\displaystyle \mathsf{y^3= \frac{-1}{x^3- \frac{1}{1000} } }\\\\\\\mathsf{y^3= \frac{-1}{ \frac{1000x^3-1}{1000} } }\\\\\\\mathsf{y^3= \frac{-1000}{1000x^3-1} }\\\\\\\boxed{\mathsf{y= \sqrt[3]{\frac{-1000}{1000x^3-1} } }} \displaystyle \mathsf{y^3= \frac{-1}{x^3- \frac{1}{1000} } }\\\\\\\mathsf{y^3= \frac{-1}{ \frac{1000x^3-1}{1000} } }\\\\\\\mathsf{y^3= \frac{-1000}{1000x^3-1} }\\\\\\\boxed{\mathsf{y= \sqrt[3]{\frac{-1000}{1000x^3-1} } }}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7By%5E3%3D+%5Cfrac%7B-1%7D%7Bx%5E3-+%5Cfrac%7B1%7D%7B1000%7D+%7D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7By%5E3%3D+%5Cfrac%7B-1%7D%7B+%5Cfrac%7B1000x%5E3-1%7D%7B1000%7D+%7D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7By%5E3%3D+%5Cfrac%7B-1000%7D%7B1000x%5E3-1%7D+%7D%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cmathsf%7By%3D+%5Csqrt%5B3%5D%7B%5Cfrac%7B-1000%7D%7B1000x%5E3-1%7D+%7D++%7D%7D)
Equações Diferenciais Ordinárias por Variáveis Separáveis.
A)
y(0) = 1
x = 0 e y = 1
B)
y(0) = 4
x = 0 e y = 4
C)
D)
E)
Alguma coisa no valor inicial está errado.
F)
vermocar:
Obrigado, vlu, muito bem explicado.
Perguntas interessantes
Português,
11 meses atrás
Geografia,
11 meses atrás
Matemática,
11 meses atrás
História,
1 ano atrás
Psicologia,
1 ano atrás
Matemática,
1 ano atrás
Psicologia,
1 ano atrás