Física, perguntado por danykrebs82, 9 meses atrás

Determine a resistência equivalente, entre os terminais A e B, das associações representadas a seguir: ​

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
1

Explicação:

1) \sf R~e~R~\Rightarrow~R_{eq_{1}}

Em série

\sf R_{eq_{1}}=R+R

\sf R_{eq_{1}}=2R

2) \sf R~e~R_{eq_{1}}~\Rightarrow~R_{eq_{2}}

Em paralelo

\sf R_{eq_{2}}=\dfrac{R\cdot2R}{R+2R}

\sf R_{eq_{2}}=\dfrac{2R^2}{3R}

\sf R_{eq_{2}}=\dfrac{2R}{3}

3) \sf R~e~R_{eq_{2}}~\Rightarrow~R_{eq_{3}}

Em série

\sf R_{eq_{3}}=R+\dfrac{2R}{3}

\sf R_{eq_{3}}=\dfrac{3R+2R}{3}

\sf R_{eq_{3}}=\dfrac{5R}{3}

4) \sf R~e~R_{eq_{3}}~\Rightarrow~R_{eq_{4}}

Em paralelo

\sf R_{eq_{4}}=\dfrac{R\cdot\frac{5R}{3}}{R+\frac{5R}{3}}

\sf R_{eq_{4}}=\dfrac{\frac{5R^2}{3}}{\frac{3R+5R}{3}}

\sf R_{eq_{4}}=\dfrac{\frac{5R^2}{3}}{\frac{8R}{3}}

\sf R_{eq_{4}}=\dfrac{5R^2}{3}\cdot\dfrac{3}{8R}

\sf R_{eq_{4}}=\dfrac{5R^2}{8R}

\sf R_{eq_{4}}=\dfrac{5R}{8}

5) \sf R~e~R_{eq_{4}}~\Rightarrow~R_{eq_{5}}

Em série

\sf R_{eq_{5}}=R+\dfrac{5R}{8}

\sf R_{eq_{5}}=\dfrac{8R+5R}{8}

\sf R_{eq_{5}}=\dfrac{13R}{8}

6) \sf R~e~R_{eq_{5}}~\Rightarrow~R_{eq_{6}}

Em paralelo

\sf R_{eq_{6}}=\dfrac{R\cdot\frac{13R}{8}}{R+\frac{13R}{8}}

\sf R_{eq_{6}}=\dfrac{\frac{13R^2}{8}}{\frac{8R+13R}{8}}

\sf R_{eq_{6}}=\dfrac{\frac{13R^2}{8}}{\frac{21R}{8}}

\sf R_{eq_{6}}=\dfrac{13R^2}{8}\cdot\dfrac{8}{21R}

\sf R_{eq_{6}}=\dfrac{13R^2}{21R}

\sf R_{eq_{6}}=\dfrac{13R}{21}

7) \sf R~e~R_{eq_{6}}~\Rightarrow~R_{eq_{7}}

Em série

\sf R_{eq_{7}}=R+\dfrac{13R}{21}

\sf R_{eq_{7}}=\dfrac{21R+13R}{21}

\sf R_{eq_{7}}=\dfrac{34R}{21}

8) \sf R~e~R_{eq_{7}}~\Rightarrow~R_{eq_{AB}}

Em paralelo

\sf R_{eq_{AB}}=\dfrac{R\cdot\frac{34R}{21}}{R+\frac{34R}{21}}

\sf R_{eq_{AB}}=\dfrac{\frac{34R^2}{21}}{\frac{21R+34R}{21}}

\sf R_{eq_{AB}}=\dfrac{\frac{34R^2}{21}}{\frac{55R}{21}}

\sf R_{eq_{AB}}=\dfrac{34R^2}{21}\cdot\dfrac{21}{55R}

\sf R_{eq_{AB}}=\dfrac{34R^2}{55R}

\sf \red{R_{eq_{AB}}=\dfrac{34R}{55}}

Perguntas interessantes