Matemática, perguntado por larissaGargary2, 1 ano atrás

determine a posição relativa dos pontos A(3,3), B(1,-5) e D(-2, 10) em relação a circunferência da equação a: x² + y² + 4x -8y - 16 =0​

Soluções para a tarefa

Respondido por moisesgomes1234
1

Resposta:

O ponto A é Interno em relação à circunferência;

O ponto B é Externo em relação à circunferência;

O ponto D é Pertencente a circunferência.

Explicação passo-a-passo:

A forma mais comum para fazer essa questão seria calculando a distância entre os pontos indicados e o centro dessa circunferência e observar se o resultado é maior, igual ou menor que o raio. Mas nesse cálculo a equação está na forma geral, o que é muito mais complicado passar para a forma algébrica!

Portanto, é muito mais simples seguir esse macete:

Sabendo da Equação da Circunferência X² + Y² +4x -8y -16=0

No ponto A(3,3),  sendo X=3 e Y=3 apenas substitua esses valores de X e Y na equação geral da circunferência:

3² + 3² + 4.3 - 8.3 -16 = 0

9+9+12-24-16=0

18-12-16

-10

Com esse macete você apenas observa o valor do resultado e relacione com os seguintes critérios:

Se o resultado for maior que 0 ( > 0) a Posição relativa será Externa;

Se o resultado for igual a 0 ( = 0) a Posição relativa será Pertencente;

Se o resultado for menor que 0 ( < 0) a Posição relativa será Interna.

No caso do ponto A(3,3) após a substituição encontramos o resultado -10

-10 < 0 ==> Portanto este ponto é Interno

No ponto B(1,-5) faremos a mesma coisa

1² + (-5)² +4.1 -8.(-5) -16 =0

1 + 25 + 4 +40 -16

30+40-16

54

Nesse ponto 54>0 (54 é maior que 0)

Portanto o ponto B é Externo

No ponto D(-2,10)

(-2)²+10²+4.(-2)-8.10-16

4+100-8-80-16

104-104

0

Nesse ponto 0=0 (zero é igual a 0)

Portanto o ponto D é Pertencente

Perguntas interessantes