determine :
a) o quarto termo de (x+2)^7
b) o setimo termo de (2x+1)^8
Soluções para a tarefa
Respondido por
2
O
-ésimo termo do desenvolvimento de
é dado por
![t_{k+1}=\binom{n}{k}a^{n-k}\,b^{k} t_{k+1}=\binom{n}{k}a^{n-k}\,b^{k}](https://tex.z-dn.net/?f=t_%7Bk%2B1%7D%3D%5Cbinom%7Bn%7D%7Bk%7Da%5E%7Bn-k%7D%5C%2Cb%5E%7Bk%7D)
com
;
e
é o coeficiente binomial.
Assim, temos um total de
termos neste desenvolvimento.
a) o quarto termo de
:
![a=x\\ \\ b=2\\ \\ n=7\\ \\ k+1=4 \Rightarrow k=3 a=x\\ \\ b=2\\ \\ n=7\\ \\ k+1=4 \Rightarrow k=3](https://tex.z-dn.net/?f=a%3Dx%5C%5C+%5C%5C+b%3D2%5C%5C+%5C%5C+n%3D7%5C%5C+%5C%5C+k%2B1%3D4+%5CRightarrow+k%3D3)
O quarto termo é
![t_{4}=\binom{7}{3}x^{7-3} \cdot 2^{3}\\ \\ =\frac{7!}{3! \cdot \left(7-3 \right )!} \cdot x^{4} \cdot 8\\ \\ =\frac{7!}{3! \cdot 4!} \cdot x^{4} \cdot 8\\ \\ =\frac{7 \cdot 6 \cdot 5 \cdot 4!}{3 \cdot 2 \cdot 1 \cdot 4!} \cdot x^{4} \cdot 8\\ \\ =\frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1} \cdot x^{4} \cdot 8\\ \\ =35 \cdot x^{4} \cdot 8 \Rightarrow \boxed{t_{4}=280x^{4}} t_{4}=\binom{7}{3}x^{7-3} \cdot 2^{3}\\ \\ =\frac{7!}{3! \cdot \left(7-3 \right )!} \cdot x^{4} \cdot 8\\ \\ =\frac{7!}{3! \cdot 4!} \cdot x^{4} \cdot 8\\ \\ =\frac{7 \cdot 6 \cdot 5 \cdot 4!}{3 \cdot 2 \cdot 1 \cdot 4!} \cdot x^{4} \cdot 8\\ \\ =\frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1} \cdot x^{4} \cdot 8\\ \\ =35 \cdot x^{4} \cdot 8 \Rightarrow \boxed{t_{4}=280x^{4}}](https://tex.z-dn.net/?f=t_%7B4%7D%3D%5Cbinom%7B7%7D%7B3%7Dx%5E%7B7-3%7D+%5Ccdot+2%5E%7B3%7D%5C%5C+%5C%5C+%3D%5Cfrac%7B7%21%7D%7B3%21+%5Ccdot+%5Cleft%287-3+%5Cright+%29%21%7D+%5Ccdot+x%5E%7B4%7D+%5Ccdot+8%5C%5C+%5C%5C+%3D%5Cfrac%7B7%21%7D%7B3%21+%5Ccdot+4%21%7D+%5Ccdot+x%5E%7B4%7D+%5Ccdot+8%5C%5C+%5C%5C+%3D%5Cfrac%7B7+%5Ccdot+6+%5Ccdot+5+%5Ccdot+4%21%7D%7B3+%5Ccdot+2+%5Ccdot+1+%5Ccdot+4%21%7D+%5Ccdot+x%5E%7B4%7D+%5Ccdot+8%5C%5C+%5C%5C+%3D%5Cfrac%7B7+%5Ccdot+6+%5Ccdot+5%7D%7B3+%5Ccdot+2+%5Ccdot+1%7D+%5Ccdot+x%5E%7B4%7D+%5Ccdot+8%5C%5C+%5C%5C+%3D35+%5Ccdot+x%5E%7B4%7D+%5Ccdot+8+%5CRightarrow+%5Cboxed%7Bt_%7B4%7D%3D280x%5E%7B4%7D%7D)
b) o sétimo termo de
:
![a=2x\\ \\ b=1\\ \\ n=8\\ \\ k+1=7 \Rightarrow k=6 a=2x\\ \\ b=1\\ \\ n=8\\ \\ k+1=7 \Rightarrow k=6](https://tex.z-dn.net/?f=a%3D2x%5C%5C+%5C%5C+b%3D1%5C%5C+%5C%5C+n%3D8%5C%5C+%5C%5C+k%2B1%3D7+%5CRightarrow+k%3D6)
O sétimo termo é
![t_{7}=\binom{8}{6}\left(2x \right )^{8-6}\cdot 1^{6}\\ \\ =\frac{8!}{6! \cdot \left(8-6 \right )!}\cdot \left(2x \right )^{2} \cdot 1^{6}\\ \\ =\frac{8!}{6! \cdot 2!}\cdot 4x^{2}\cdot 1\\ \\ =\frac{8 \cdot 7 \cdot 6!}{6! \cdot 2 \cdot 1} \cdot 4x^{2}\\ \\ =\frac{8 \cdot 7}{2 \cdot 1} \cdot 4x^{2}\\ \\ =28 \cdot 4x^{2} \Rightarrow \boxed{t_{7}=112x^{2}} t_{7}=\binom{8}{6}\left(2x \right )^{8-6}\cdot 1^{6}\\ \\ =\frac{8!}{6! \cdot \left(8-6 \right )!}\cdot \left(2x \right )^{2} \cdot 1^{6}\\ \\ =\frac{8!}{6! \cdot 2!}\cdot 4x^{2}\cdot 1\\ \\ =\frac{8 \cdot 7 \cdot 6!}{6! \cdot 2 \cdot 1} \cdot 4x^{2}\\ \\ =\frac{8 \cdot 7}{2 \cdot 1} \cdot 4x^{2}\\ \\ =28 \cdot 4x^{2} \Rightarrow \boxed{t_{7}=112x^{2}}](https://tex.z-dn.net/?f=t_%7B7%7D%3D%5Cbinom%7B8%7D%7B6%7D%5Cleft%282x+%5Cright+%29%5E%7B8-6%7D%5Ccdot+1%5E%7B6%7D%5C%5C+%5C%5C+%3D%5Cfrac%7B8%21%7D%7B6%21+%5Ccdot+%5Cleft%288-6+%5Cright+%29%21%7D%5Ccdot+%5Cleft%282x+%5Cright+%29%5E%7B2%7D+%5Ccdot+1%5E%7B6%7D%5C%5C+%5C%5C+%3D%5Cfrac%7B8%21%7D%7B6%21+%5Ccdot+2%21%7D%5Ccdot+4x%5E%7B2%7D%5Ccdot+1%5C%5C+%5C%5C+%3D%5Cfrac%7B8+%5Ccdot+7+%5Ccdot+6%21%7D%7B6%21+%5Ccdot+2+%5Ccdot+1%7D+%5Ccdot+4x%5E%7B2%7D%5C%5C+%5C%5C+%3D%5Cfrac%7B8+%5Ccdot+7%7D%7B2+%5Ccdot+1%7D+%5Ccdot+4x%5E%7B2%7D%5C%5C+%5C%5C+%3D28+%5Ccdot+4x%5E%7B2%7D+%5CRightarrow+%5Cboxed%7Bt_%7B7%7D%3D112x%5E%7B2%7D%7D)
com
e
Assim, temos um total de
a) o quarto termo de
O quarto termo é
b) o sétimo termo de
O sétimo termo é
Perguntas interessantes
Português,
1 ano atrás
Ed. Física,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Português,
1 ano atrás