Matemática, perguntado por HLOckS, 1 ano atrás

Determine a matriz inversidade de:

a) A \ = \   \left[\begin{array}{ccc}1&-1\\2&0\\\end{array}\right]

b) B \ = \   \left[\begin{array}{ccc}5&8\\2&3\\\end{array}\right]


humbertobandei: matriz oposta?
HLOckS: Eu acho que é inversa.
Yoda: É inversa?
HLOckS: Sim.
Yoda: ok!

Soluções para a tarefa

Respondido por Yoda
3
a)

A \ \bullet  A^{-1} \ = \  I_{2}

  \left[\begin{array}{ccc}1&-1\\2& \ \  0 \\\end{array}\right]  \ \bullet \    \left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right]  \ = \   \left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right]

 1^{a} \ linha \  \ x \ \  1^{a} \ coluna \ =  \boxed{a \ - \ c}

 1^{a} \ linha \  \ x \ \  2^{a} \ coluna \ =  \boxed{b \ - \ d}

 2^{a} \ linha \  \ x \ \  1^{a} \ coluna \ =  \boxed{2 \ a }

 2^{a} \ linha \  \ x \ \  2^{a} \ coluna \ =  \boxed{2 \ b}

  \left[\begin{array}{ccc}a - c&b - 1\\2a&2b\\\end{array}\right] \ = \   \left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right]

 \left \{ {{a \ - \ c \ = \ 1} \atop {2 \ a \ = \ 0 \ \Rightarrow \boxed{a = 0}}} \right.

\bullet \ a - c = 1 \\  \\

0 - c = 1

\boxed{c = -1}

 \left \{ {{b - b \ = \ 0} \atop {2b \ = \ 1 \  \Rightarrow  \ \boxed{b =  \frac{1}{2} }}} \right.

\bullet \ b - d = 0

 \frac{1}{2} \ - d \ = 0

\boxed{d \ = \  \frac{1}{2} }

\boxed{\boxed{ A^{-1} \ = \   \left[\begin{array}{ccc} \  \  \ 0& \frac{1}{2} \\-1&  \frac{1}{2}  \\\end{array}\right]  }}

b)

B \ = \  \left[\begin{array}{ccc}5&8\\2&3\\\end{array}\right]

B \ = \   \left[\begin{array}{ccc}5&8\\2&3\\\end{array}\right] \ \bullet \    \left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right] \ = \   \left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right]

 1^{a} \ linha \  \ x \ \  1^{a} \ coluna \ =  \boxed{5a \ + \ 8c}

 1^{a} \ linha \  \ x \ \  2^{a} \ coluna \ =  \boxed{5b \ + \ 8d}

 2^{a} \ linha \  \ x \ \  1^{a} \ coluna \ =  \boxed{2a \ + \ 3c}

 2^{a} \ linha \  \ x \ \  2^{a} \ coluna \ =  \boxed{2b \ + \ 3d}

  \left[\begin{array}{ccc}\ 5a \ + \ 8c \ &5b \ + \ 8d\\ 2a \ + \ 3c&2b \ + \ 3d\\\end{array}\right]  \ = \   \left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right]

 \left \{ {{5a \ + \ 8c \ = \ 1 \ (2)} \atop {2a \ + \ 3c \ = \ 0 \ (-5)}} \right.

 \left \{ {{10a \ + \ 16c \ = \ 2} \atop {10a \ - \ 15c \ =  \ 0}} \right.

\boxed{c = 2}

\bullet \ 2a \ + \ 3c \ = \ 0

2a \ + \ 6 \ = 0

2a \ = \ - \ 6

\boxed{a \ = \ - \ 3}

 \left \{ {{5b \ + \ 8d \ = \ 0 \ (12)} \atop {2b \ + \ 3d \ = \ 1 \ (-5)}} \right.

 \left \{ {{10b \ + 16d \ = \ 0} \atop {- \ 10b \ - \ 15 \ = \ - \ 5}} \right.

\boxed{d \ = \ - \ 5}

\bullet \ 2b \  - \ 15 \ = \ 1

2b \ = \ 16

\boxed{b \ = \ 8}

\boxed{\boxed{  B^{-1} \ = \   \left[\begin{array}{ccc}-3& \ \ \ \ 8\\ \ \ \ 2& \ - \ 5\\\end{array}\right]  }}







HLOckS: Nossa cara, ficou muito nassa a resposta.
HLOckS: Valeu mesmo.
Perguntas interessantes