Matemática, perguntado por joaopedro007mm, 7 meses atrás

) Determine a função quadrática y = ax² + bx + 5 correspondente ao gráfico. * 1 ponto Imagem sem legenda a) y = x² + 4x + 5 b) y = -x² - 4x + 5 c) y = –x² + 4x + 5 d) y = x² + 4x – 5 2) Dada a função f(x) = 3x² - 6x – m, determine para que valor de m, o valor mínimo da função é 4. a) 7 b) 9 c) 10 d) 12​


evelintaisprestesdel: 1=c 2=a
ZyPx: certin
lediane2021: Certinho
sanchesbelly: obrigadaaa
sanchesbelly: c&a LSKAKLDAKJDKLAS sou iidiot*

Soluções para a tarefa

Respondido por powerfilmes7
4

Resposta:

d

Explicação passo-a-passo:

só tô respondendo pra entrar no brainly , triste


miriarafaabdias: tudo bem, kk
Respondido por andre19santos
23

(1) A função correspondente ao gráfico é c) y = –x² + 4x + 5.

(2) O valor de m deve ser -7, alternativa A.

QUESTÃO 1

No gráfico, podemos ver que o vértice da parábola é o ponto (2, 9) e que a concavidade está voltada para baixo, isto significa que o coeficiente a é menor que zero.

Com estas informações, podemos excluir as alternativas A e D. Substituindo o ponto (2, 9), temos:

b) 9 = -2² - 4·2 + 5

9 = -4 - 8 + 5

9 ≠ -7

c) 9 = -2² + 4·2 + 5

9 = -4 + 8 + 5

9 = 9

Resposta: C

QUESTÃO 2

O valor mínimo da função é dado pela coordenada y do vértice:

yv = -Δ/4a

Substituindo os coeficientes:

4 = -((-6)² - 4·3·(-m))/4·3

48 = -(36 + 12m)

48 = -36 - 12m

12m = -84

m = -7

Resposta: A


miriarafaabdias: obggggggggggggg.
Perguntas interessantes