Matemática, perguntado por ilane, 1 ano atrás


determine a função inversa f(f^-1), em cada caso:

a)f(x)= 3x^3   1


b)


c) f(x)=  \frac{x}{x+1}


d) f(x)= \frac{1}{ \sqrt[3]{x  2} }


Anexos:

Soluções para a tarefa

Respondido por Luanferrao
1
a) f(x) = 3x^3-1\\\\ y = 3x^3-1\\\\ x = 3y^3-1\\\\ x+1 = 3y^3\\\\ y^3 = \frac{x+1}{3}\\\\ y =  \sqrt[3]{\frac{x+1}{3}}\\\\\ \boxed{f^-(x) =\sqrt[3]{\frac{x+1}{3}}}

b) f(x)  = \sqrt[5]{4x+2} \\\\ y = \sqrt[5]{4x+2} \\\\ x = \sqrt[5]{4y+2}\\\\ (x)^5 = (\sqrt[5]{4y+2})^5\\\\ x^5 = 4y+2\\\\ y = \frac{x^5-2}{4}\\\\ \boxed{f(^-x)=\frac{x^5-2}{4}}

c) f(x) = \frac{x}{x+1}\\\\ y = \frac{x}{x+1}\\\\ x = \frac{y}{y+1}\\\\ x(y+1) = y\\\\ xy+x = y\\\\ xy-y = -x\\\\ y(x-1) = -x\\\\ y = \frac{-x}{x-1}\\\\ \boxed{f(^-x) = \frac{x}{1-x}}

d) f(x) =\frac{1}{ \sqrt[3]{x-2} }\\\\ y = \frac{1}{ \sqrt[3]{x-2} }\\\\ x = \frac{1}{ \sqrt[3]{y-2} }\\\\ x( \sqrt[3]{y-2}) = 1\\\\  (\sqrt[3]{y-2})^3 = (\frac{1}{x})^3\\\\ y-2 = \frac{1}{x^3}\\\\ y = x^-^3+2\\\\ \boxed{f(-^x) = x^-^3+2}
Perguntas interessantes