determine a função do primeiro grau cujo gráfico passa pelos pontos: k (1,6) e (-2, -3)
Soluções para a tarefa
Respondido por
0
f(x) = ax + b
f(1) = 6
f(1) = a + b
a + b = 6
-----------------------------
f(-2) = - 3
f(-2) = - 2a + b
- 2a + b = - 3
-----------------------------
a + b = 6 => Multiplicando todos os termos por 2
-2a + b = - 3
2a + 2b = 12
- 2a + b = - 3
Somando essas duas equações
2a - 2a + 2b + b = 12 - 3
3b = 9
b = 9/3
b = 3
a + b = 6
a + 3 = 6
a = 6 - 3
a = 3
f(x) = 3x + 3
f(1) = 6
f(1) = a + b
a + b = 6
-----------------------------
f(-2) = - 3
f(-2) = - 2a + b
- 2a + b = - 3
-----------------------------
a + b = 6 => Multiplicando todos os termos por 2
-2a + b = - 3
2a + 2b = 12
- 2a + b = - 3
Somando essas duas equações
2a - 2a + 2b + b = 12 - 3
3b = 9
b = 9/3
b = 3
a + b = 6
a + 3 = 6
a = 6 - 3
a = 3
f(x) = 3x + 3
Respondido por
0
Pontos: (1,6) e (-2,-3)
y = ax + b
x = 1 ⇒ y = 6
6 = a1 + b
x = -2 ⇒ y = -3
-3 = a.-2 + b
Sistema:
6 = a.1 + b (1)
-3 = a.-2 + b (2)
Multiplicando (2) por -1 e somando as equação, temos:
6 = a.1 + b
3 = a.2 - b
-----------------------(+)
9 = a.3 + 0
a.3 = 9
a = 9/3
a = 3
Substituindo a = 3 em qualquer das equações:
6 = a.1 + b
6 = 3.1 + b
6 = 3 + b
b = 6 - 3
b = 3
y = 3x + 3
Resposta: a equação procurada é y = 3x + 3
Espero ter ajudado.
y = ax + b
x = 1 ⇒ y = 6
6 = a1 + b
x = -2 ⇒ y = -3
-3 = a.-2 + b
Sistema:
6 = a.1 + b (1)
-3 = a.-2 + b (2)
Multiplicando (2) por -1 e somando as equação, temos:
6 = a.1 + b
3 = a.2 - b
-----------------------(+)
9 = a.3 + 0
a.3 = 9
a = 9/3
a = 3
Substituindo a = 3 em qualquer das equações:
6 = a.1 + b
6 = 3.1 + b
6 = 3 + b
b = 6 - 3
b = 3
y = 3x + 3
Resposta: a equação procurada é y = 3x + 3
Espero ter ajudado.
Perguntas interessantes
Química,
10 meses atrás
Ed. Física,
10 meses atrás
Matemática,
10 meses atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás