Determine a equação na forma reduzida que passa pelos pontos indicados no plano cartesiano:
Anexos:
Soluções para a tarefa
Respondido por
1
Oie, tudo bom?
Resposta: y = 6/7 x - 9/7
E(5 , 3) e F(- 2 , - 3) E(x₁ , y₁) e F(x₂ , y₂)
y = mx + n
Coeficiente angular:
m = [y₂ - y₁]/[x₂ - x₁]
m = [- 3 - 3]/[- 2 - 5]
m = -6/-7
m = 6/7
Escolha um dos pontos para encontrar o coeficiente linear, no caso aqui:
E(5 , 3) x = 5 e y = 3
Substitua os valores na equação:
y = mx + n x = 5, y = 3 e m = 6/7
3 = 6/7 . 5 + n
3 = 30/7 + n
- n = 30/7 - 3
- n = [30 - 21]/7
- n = 9/7 . (- 1)
n = - 9/7
Como encontramos o coeficiente linear, basta substituir os valores na equação mais uma vez, no caso aqui será m e n:
y = mx + n m = 6/7 e n = - 9/7
y = 6/7 x + (- 9/7)
y = 6/7 x - 9/7
Att. NLE Top Shotta
Perguntas interessantes
Administração,
7 meses atrás
Geografia,
7 meses atrás
Matemática,
7 meses atrás
Inglês,
9 meses atrás
Filosofia,
9 meses atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Lógica,
1 ano atrás